20
Объяснение:
f(x)=2x³-3x²-7
f'(x)=6x²-6x
6x²-6x=0
6x(x-1)=0
x₁=0
x₂=1
(0)(1)>x
там где производная положительна (+), функция возрастает;
где производная отрицательна (-), функция убывает.
x=0 - точка максимума
находим значения функции в точке максимума и на границах отрезка [-1;3]
заметим, что на промежутке (-∞;0) - функция возрастает, значит f(0)>f(-1)
в точке х=3 функция тоже возрастает поэтому достаточно проверить только 2 точки: x=0 и x=3
f(0)=2*0³-3*0²-7=-7
f(3)=2*3³-3*3²-7=20
наибольшее значение: f(3)=20
20
Объяснение:
f(x)=2x³-3x²-7
f'(x)=6x²-6x
6x²-6x=0
6x(x-1)=0
x₁=0
x₂=1
(0)(1)>x
там где производная положительна (+), функция возрастает;
где производная отрицательна (-), функция убывает.
x=0 - точка максимума
находим значения функции в точке максимума и на границах отрезка [-1;3]
заметим, что на промежутке (-∞;0) - функция возрастает, значит f(0)>f(-1)
в точке х=3 функция тоже возрастает поэтому достаточно проверить только 2 точки: x=0 и x=3
f(0)=2*0³-3*0²-7=-7
f(3)=2*3³-3*3²-7=20
наибольшее значение: f(3)=20
y' = 6
2) y = x - 1/2
y' = 1
3) y = x^2 + sinx
y' = 2x + cosx
y'(x0) = 2*pi + cos(pi) = 2*pi - 1
4) y = (x^4)/2 - (3*x^2)/2 + 2x
y' = 1/2 * 4x^3 - 1/2 * 6x + 2 = 2x^3 - 3x + 2
y'(x0) = 2*8 - 3*2 + 2 = 16 - 6 + 2 = 12
5) y = sin(3x-2)
y' = cos(3x-2)*(3x-2)' = 3cos(3x-2)
6) не поняла, что знак "V" обозначает, пусть будет делением
y = 3x^2 - 12/x
y' = 6x - 12*(-1/(x^2)) = 6x + 12/(x^2)
y'(x0) = 6*4 + 12/16 = 24 + 3/4 = 24,75
7) y = 1/(2tg(4x-pi)) + pi/4
y' = -1/(2tg^2(4x-pi)) * 1/cos^2(4x-pi) * 4 + 0 = -2/(tg^2(4x-pi)*cos^2(4x-pi)) = -2/sin^2(4x-pi)