Уровень В 68. Одним из решений уравнения х2 — у2 = 72 является пара чисел
(т; п), где тип соответственно равны количеству самых боль-
ших озер, полностью расположенных на территории Казахстана,
Площадь каждого из которых более 700 км”, и самых длинных
рек протяженностью не менее 800 км, протекающих по тер-
ритории Казахстана. Найдите эти числа, если известно, что
12 < m+ n< 20.
К числителю прибавили 3, а к знаменателю 2, получим дробь: (x-3+3)/(x+2)=x/(x+2)
Составим уравнение:
х/(x+2)-(x-3)/x=7/40 (приведем к общему знаменателю х*(х+2)):
х*x-(x-3)(x+2)=7/40
(x²-x²+3x-2x+6)/x(x-2)=7/40
(x+6)/(x²+2x)=7/40
40*(x+6)/(x²+2x)=7
40x+240=7(x²+2x)
40x+240=7x²-14x
40x+240-7x²-14x=0
26x-240-7x²=0 (умножим на -1)
7x² -26x-240=0
D=b²-4ac=(-26)²+4*7*(-240)=676+6720=7396
x1=-b+√D/2a=-(-26)+√7396/2*7=26+86/14=8
x2=-b-√D/2a=-(-26)-√7396/2*7=26-86/14=-60/14 - не подходит
х – знаменатель дроби, х=8, тогда числитель х-3=8-4=5
дробь: 5/8
проверим: было 5/8, стало 8/10
8/10-5/8=(8*4-5*5)/40=7/40
ответ: 5/8
y = f(x)
Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.