Домножим числитель и знаменатель на такое число, что бы получить в знаменателе квадрат целого числа. Проще всего домножить на 7:
28/49 и 35/49
Но между 28 и 35 нету квадратов целых чисел, поэтому надо ещё домножить числитель и знаменатель каждого числа, но уже на квадрат какого-то целого числа, например, на 4 ,9, 16 и т.д. Попробуем умножить на 4:
112/196 и 140/196
Между числами 112 и 140 есть число 121, которое является квадратом числа 11. Поэтому искомое число 121/196 (так как оно будет квадратом числа 11/14).
Можно калькулятором себя проверить, действительно ли число 121/196 будет находится между 4/7 и 5/7:
Логарифмом в данном случае является степень, в которую надо возвести 0,3, чтобы получить 0.35.
Мы также знаем, что при возведении в степень дробных чисел от 0 до 1, как в нашем случае, число уменьшается, так как произведение дробной части числа на само себя всегда его уменьшает. Верно и наоборот, что дробное число в степени увеличивается, если степень также лежит в промежутке от 0 до 1.
Соответственно в вашем случае данный логарифм будет принадлежать числовому промежутку от (0 до 1), а точнее равен 0.87, если проверить наше предположение на калькуляторе. Вывод:
Домножим числитель и знаменатель на такое число, что бы получить в знаменателе квадрат целого числа. Проще всего домножить на 7:
28/49 и 35/49
Но между 28 и 35 нету квадратов целых чисел, поэтому надо ещё домножить числитель и знаменатель каждого числа, но уже на квадрат какого-то целого числа, например, на 4 ,9, 16 и т.д. Попробуем умножить на 4:
112/196 и 140/196
Между числами 112 и 140 есть число 121, которое является квадратом числа 11. Поэтому искомое число 121/196 (так как оно будет квадратом числа 11/14).
Можно калькулятором себя проверить, действительно ли число 121/196 будет находится между 4/7 и 5/7:
4/7 = 0,5714...
121/196 = 0,6173...
5/7 = 0,7143...
Мы также знаем, что при возведении в степень дробных чисел от 0 до 1, как в нашем случае, число уменьшается, так как произведение дробной части числа на само себя всегда его уменьшает. Верно и наоборот, что дробное число в степени увеличивается, если степень также лежит в промежутке от 0 до 1.
Соответственно в вашем случае данный логарифм будет принадлежать числовому промежутку от (0 до 1), а точнее равен 0.87, если проверить наше предположение на калькуляторе. Вывод:
ответ: 0<log0.3(0.35)