Если за 3 ч первый автомобиль расстояние на 30 км больше, чем второй, то за 1час он расстояние на 10 км больше, чем второй. Это означает, что скорость первого автомобиля на 10км/ч больше скорости второго x- скорость второго автомобиля x+10 - скорость первого автомобиля 360/x - время на весь путь второго автомобиля 360/(x+10) - время на весь путь первого автомобиля 360/x-360/(x+10)=1/2⇒ 360(x+10-x)*2=x(x+10)⇒ x^2+10x-7200=0 D/4==5^2+7200=7225; √D/4=85 x1=-5+85=80 x2=-5-85=-90<0 - не подходит x=80 - скорость второго автомобиля 80+10=90 - скорость первого автомобиля
Это означает, что скорость первого автомобиля на 10км/ч больше скорости второго
x- скорость второго автомобиля
x+10 - скорость первого автомобиля
360/x - время на весь путь второго автомобиля
360/(x+10) - время на весь путь первого автомобиля
360/x-360/(x+10)=1/2⇒
360(x+10-x)*2=x(x+10)⇒
x^2+10x-7200=0
D/4==5^2+7200=7225; √D/4=85
x1=-5+85=80
x2=-5-85=-90<0 - не подходит
x=80 - скорость второго автомобиля
80+10=90 - скорость первого автомобиля
Начертим рисунок. Изобразим прямоугольный треугольник, один катет которого расположен горизонтально (на восток), а второй вертикально (на юг).
Для решения задачи применим теорему Пифагора.
Итак, скорость первого велосипедиста обозначим х км/ч,
скорость второго (х+4) км/ч.
Первый за 1 час проехал расстояние хкм/ч * 1 ч =х км
а второй (х+4)км/ч * 1 ч =х+4 км
Расстояние между велосипедистами (это гипотенуза прямоугольного треугольника) через 1 час оказалось 20 км.
Составим уравнение для решения задачи:
x=12(км/ч)-скорость первого
х+4=12+4=16(км/ч)-скорость второго