1(б) x^2 -6x-7=0
D1=(-3)^2-1*(-7)=16 => корень из D1=4
x1=3+4=7 x2=3-4=-1
x^2-9x+14=0
D=(-9)^2-4*1*14=25 => корень из D=5
x1=9+5/2=7 x2=9-5/2=2
Записываем дробь с полученными корнями.
(x-7)(x+1)/(x-7)(x-2)=x+1/x-2
2(б) 3x^2-16x+5=0
D1=(-8)^2-3*5=49 => корень из D1=7
x1=8+7/3=5 x2=8-7/3=1/3
Нижнюю часть сократим на x, но будем помнить, что за этим x скрывается ещё один корень - 0.
x^2-4x-5=0
D1=(-2)^2-1*(-5)=9 => корень из D1=3
x1=2+3=5 x2=2-3=-1 x3=0
Подставляем.
(x-5)(x-1/3)/(x-5)(x+1)x=x-1/3/x(x+1)
Объяснение:
1.
a)5√2+2√32-√98= 5√2+2√(16*2)-√(49*2)= 5√2+2√(4²*2)-V(7²*2)=
=5√2+2*4√2-7√2= 5√2+8√2-7√2= 13√2-7√2=6√2
b)(4√3+2√21)*√3=4√3*√3+√27*√3=4√(3*3)=4√3²+√27*3)=4*3+√(81)= =12+√9²=12+9=21
c)(√5-√3)²=5-2√5*√3+3=5-√(2*18)+3=5-2√(3²)*2)+3=8-2*3√2=8-6√2
2.
1/2√28 i 1/3√54
√(1/2)²*28) i √(1/3²)*54)
√(1/4*28) i √(1/9)*54)
√7 > √6
3.
(√10 +5)/(2+√10) = (√10 +5)/(2+√10) *(2-√10)/(2-√10)=
=(√10+5)(2-√10) /(4-10)= (2√10-√10*√10+10-5√10)/(-6)=
=(-3√10-10+10)/(-6)=3√10/6=√10 / 2
1(б) x^2 -6x-7=0
D1=(-3)^2-1*(-7)=16 => корень из D1=4
x1=3+4=7 x2=3-4=-1
x^2-9x+14=0
D=(-9)^2-4*1*14=25 => корень из D=5
x1=9+5/2=7 x2=9-5/2=2
Записываем дробь с полученными корнями.
(x-7)(x+1)/(x-7)(x-2)=x+1/x-2
2(б) 3x^2-16x+5=0
D1=(-8)^2-3*5=49 => корень из D1=7
x1=8+7/3=5 x2=8-7/3=1/3
Нижнюю часть сократим на x, но будем помнить, что за этим x скрывается ещё один корень - 0.
x^2-4x-5=0
D1=(-2)^2-1*(-5)=9 => корень из D1=3
x1=2+3=5 x2=2-3=-1 x3=0
Подставляем.
(x-5)(x-1/3)/(x-5)(x+1)x=x-1/3/x(x+1)
Объяснение:
1.
a)5√2+2√32-√98= 5√2+2√(16*2)-√(49*2)= 5√2+2√(4²*2)-V(7²*2)=
=5√2+2*4√2-7√2= 5√2+8√2-7√2= 13√2-7√2=6√2
b)(4√3+2√21)*√3=4√3*√3+√27*√3=4√(3*3)=4√3²+√27*3)=4*3+√(81)= =12+√9²=12+9=21
c)(√5-√3)²=5-2√5*√3+3=5-√(2*18)+3=5-2√(3²)*2)+3=8-2*3√2=8-6√2
2.
1/2√28 i 1/3√54
√(1/2)²*28) i √(1/3²)*54)
√(1/4*28) i √(1/9)*54)
√7 > √6
3.
(√10 +5)/(2+√10) = (√10 +5)/(2+√10) *(2-√10)/(2-√10)=
=(√10+5)(2-√10) /(4-10)= (2√10-√10*√10+10-5√10)/(-6)=
=(-3√10-10+10)/(-6)=3√10/6=√10 / 2