В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
jovriijovrikJovrik
jovriijovrikJovrik
09.03.2023 03:29 •  Алгебра

Установить соответствия между уровнениями и коренями

Показать ответ
Ответ:
REDFRAG
REDFRAG
11.10.2021 04:39

Достове́рным собы́тием в теории вероятностей называется событие, которое в результате опыта или наблюдения непременно должно произойти. Обозначается символом. Для достоверного события, то есть вероятность события равна единице. Но, не всякое событие, вероятность которого равна 1, является достоверным

Два случайные события А и В называются противоположными, если они несовместны и образуют полную группу событий. Примеры: студент может сдать или не сдать экзамен, день и ночь. Конкретный результат испытания называется элементарным событием.

Формально говоря, элементарное событие — это подмножество исходов случайного эксперимента, которое состоит только из одного элемента; то есть элементарное событие — это всё ещё множество, но не сам элемент.

События A и B называются зависимыми, если вероятность одного из них зависит от того, произошло или не произошло другое событие.

В теории вероятностей два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют независимыми, если известное значение одной из них не дает информации о другой.

Полная группа событий По́лной гру́ппой(системой) собы́тий в теории вероятностей называется система случайных событий такая, что в результате произведенного случайного эксперимента непременно произойдет одно и только одно из них. Сумма вероятностей всех событий в группе всегда равна 1.

0,0(0 оценок)
Ответ:
джопер
джопер
05.08.2021 14:25

Таблица точек

 x y

-3.0 -18

-2.5 -8.1

-2.0 -2

-1.5 1.1

-1.0 2

-0.5 1.4

0 0

0.5 -1.4

1.0 -2

1.5 -1.1

2.0 2

2.5 8.1

3.0 18

 Точка пересечения графика функции с осью координат Y:  

График пересекает ось Y, когда x равняется 0: подставляем x=0 в x³-3x.

у =0³-3*0 = 0,

Результат: y=0. Точка: (0; 0.

Точки пересечения графика функции с осью координат X:  

График функции пересекает ось X при y=0, значит, нам надо решить уравнение:  

x³-3x = 0

Решаем это уравнение и его корни будут точками пересечения с X:

x (х²-3) = 0,

х1 = 0,  х2,3 = +-√3.

Результат: y=0. Точки: (0; -√3), (0; 0) и (0; √3).

Экстремумы функции:  

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:  

y'=3x² – 3 = 0

Решаем это уравнение и его корни будут экстремумами:  

3(х²-1) = 0,

х1 = 1,  х2  = -1.

Результат: y’=0. Точки: (-1; 2) и (1; -2). Это критические точки.

Интервалы возрастания и убывания функции:  

Найдем значения производной между критическими точками:  

x = -2 -1 0          1             2

y' = 9 0 -3          0               9.  

• Минимум функции в точке: х = -1,

• Максимум функции в точке: х = 1.

• Возрастает на промежутках: (-∞; -1) U (1; ∞)  

• Убывает на промежутке: (-1; 1)  

Точки перегибов графика функции:  

Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:  

y'' = 6x  = 0

Отсюда точка перегиба х = 0

Точка: (0; 0).

Интервалы выпуклости, вогнутости:  

Находим знаки второй производной на промежутках (-∞; 1) и (1; +∞).

                             х =     -1        0         1

                             y'' =    -6        0          6.

Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.

• Вогнутая на промежутках: (0; ∞),

• Выпуклая на промежутках: (-∞; 0)  

Вертикальные асимптоты – нет.  

Горизонтальные асимптоты графика функции:  

Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:  

• lim x3-3x, x->+∞ = ∞, значит, горизонтальной асимптоты справа не существует

• lim x3-3x, x->-∞ = -∞, значит, горизонтальной асимптоты слева не существует

Наклонные асимптоты графика функции:  

Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:  

• lim x3-3x/x, x->+oo = oo, значит, наклонной асимптоты справа не существует.

• lim x3-3x/x, x->-oo = oo, значит, наклонной асимптоты слева не существует.

Четность и нечетность функции:  

Проверим функцию -  четна или нечетна с соотношений f(-x)=f(x) и f(-x)=-f(x). Итак, проверяем:  

• (-x3)-3(-x) =  -x3+3x   нет,

• (-x3)-3(-x) = -(x3-3x) – да, значит, функция является нечётной.


Решить. если можно, то подробно
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота