Установите какими сдвигами вдоль осей координат из графика функции a) y=x^2 можно получить график функции y=x^2+6x+11 б) y=x^2-6x-8 можно получить график функции y=x^2+4x+5
Есть простые решения этой задачи, но они используют векторное или смешанное произведение векторов, а также формулу для расстояния от точки до плоскости. Вкратце, уравнение плоскости можно получить, если сосчитать определитель третьего порядка, в первой строке которого стоят x, y, z; во второй - координаты вектора a; в третьей -координаты вектора b, и приравнять его к нулю Получится уравнение x+2y+3z=0. Формула, по которой находят расстояние от точки M_0(x_0;y_0;z_0) до плоскости Ax+By+Cz+D=0, выглядит так:
|Ax_0+By_0+Cz_0+D|/√(A^2+B^2+C^2)
В нашем случае получается |3+2-6|/√(1+4+9)=1/√14.
Но если хочется решить задачу более домашними методами, скажем, ограничивая себя скалярным произведением (оно же входит в школьную программу), то получается вот что. Координаты произвольной точки M на плоскости (совпадающие с координатами радиус-вектора этой точки; давайте вообще не будем различать точку и ее радиус-вектор) получаются из координат векторов a и b с линейной комбинации: αa+βb=(2α+β;-α+β;-β), а тогда вектор AM будет иметь координаты AM(2α+β-3;-α+β-1;-β+2). Надо подобрать α и β так, чтобы AM был перпендикулярен плоскости, тогда его длина даст расстояние от M до плоскости. Перпендикулярность плоскости равносильна перпендикулярности векторам a и b, что проверяется с скалярного произведения. Получаем систему двух линейных уравнений, из которой находим α и β:
(AM,a)=5α+β-5=0 (AM,b)=α+3β-6=0,
откуда α=9/14; β=25/14. Подставляя найденный значения α и β в вектор AM, получаем AM=(1/14)(1,2,3)⇒|AM|=(1/14)√(1^2+2^2+3^2)=√14/14.
1) x1 = 8; x2 = 2
2) x1 = 3; x2 = -1
3) x = 2/3
Объяснение:
1) -x^2 + 10x - 16 = 0 (*(-1))
x^2 - 10x + 16 = 0
по т. Виета
x1 + x2 = 10 x1 = 8
x1 * x2 = 16 → x2 = 2
Или через дискриминантD = (-10)^2 - 4 * 1 * 16 = 100 - 64 = 36 (6^2)
x1 = (10+6)/2 = 16/2 = 8
x2 = (10-6)/2 = 4/2 = 2
2) -2x^2 + 4x + 6 = 0 (*(-1))
2x^2 - 4x - 6 = 0
D = (-4)^2 - 4 * 2 * (-6) = 16 + 48 = 64 (8^2)
x1 = (4+8)/2*2 = 12/4 = 3
x2 = (4-8)/2*2 = -4/4 = -1
3) 9x^2 - 12x + 4 = 0
D = (-12)^2 - 4 * 9 * 4 = 144 - 144 = 0
x = 12/2*9 = 12/18 = 2/3
x+2y+3z=0.
Формула, по которой находят расстояние от точки M_0(x_0;y_0;z_0) до плоскости Ax+By+Cz+D=0, выглядит так:
|Ax_0+By_0+Cz_0+D|/√(A^2+B^2+C^2)
В нашем случае получается |3+2-6|/√(1+4+9)=1/√14.
Но если хочется решить задачу более домашними методами, скажем, ограничивая себя скалярным произведением (оно же входит в школьную программу), то получается вот что. Координаты произвольной точки M на плоскости (совпадающие с координатами радиус-вектора этой точки; давайте вообще не будем различать точку и ее радиус-вектор) получаются из координат векторов a и b с линейной комбинации: αa+βb=(2α+β;-α+β;-β), а тогда вектор
AM будет иметь координаты AM(2α+β-3;-α+β-1;-β+2). Надо подобрать α и β так, чтобы AM был перпендикулярен плоскости, тогда его длина даст расстояние от M до плоскости. Перпендикулярность плоскости равносильна перпендикулярности векторам a и b, что проверяется с скалярного произведения. Получаем систему двух линейных уравнений, из которой находим α и β:
(AM,a)=5α+β-5=0
(AM,b)=α+3β-6=0,
откуда α=9/14; β=25/14.
Подставляя найденный значения α и β в вектор AM, получаем
AM=(1/14)(1,2,3)⇒|AM|=(1/14)√(1^2+2^2+3^2)=√14/14.
ответ: √14/14