В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Alpetrova7
Alpetrova7
24.05.2021 07:17 •  Алгебра

Установите соответствие.
какая из пар чисел является решением системы неравенства


Установите соответствие. какая из пар чисел является решением системы неравенства

Показать ответ
Ответ:
bubisolha1
bubisolha1
06.11.2021 16:58
1) Это верно даже для 3-х чисел...))
    Из 3-х любых целых чисел всегда можно выбрать 2 таких, что они будут либо оба четные, либо оба нечетные.
То есть 2 числа, допустим, четное и нечетное. Третье будет либо четным, либо нечетным. Поэтому среди 3-х любых целых чисел всегда можно найти пару четных или пару нечетных чисел.

Для чего нам это нужно? - С четными все понятно:
        2n - первое число, 2(n+k) - второе.
Тогда: 2n + 2(n+k) = 2*(n+n+k) = 2*(2n+k)
Результатом умножения на 2 любого целого числа будет четное число.

Теперь рассмотрим 2 нечетных числа:
        2n+1 - первое число, 2(n+k)+1 -второе число
Сумма: 2n+1 + 2(n+k)+1 = 2*(2n+k)+2 - очевидно, также четное.

Таким образом, из 2016 целых чисел всегда можно выбрать 2 числа так, чтобы их сумма была четной.

2) Нет, нельзя.
Если такое разбиение есть, то полная сумма 1 + 2 + ... + 21 разбивается на две равные части:
1. сумма всех максимальных чисел в каждой группе и
2. сумма всех остальных по всем группам.

Поскольку полная сумма 1 + 2 + ... + 21 = ((1+21) * 21):2 = 11 * 21 = 231 нечётна, то это невозможно.
0,0(0 оценок)
Ответ:
mialia9922
mialia9922
06.11.2021 16:58
1) Это верно даже для 3-х чисел...))
    Из 3-х любых целых чисел всегда можно выбрать 2 таких, что они будут либо оба четные, либо оба нечетные.
То есть 2 числа, допустим, четное и нечетное. Третье будет либо четным, либо нечетным. Поэтому среди 3-х любых целых чисел всегда можно найти пару четных или пару нечетных чисел.

Для чего нам это нужно? - С четными все понятно:
        2n - первое число, 2(n+k) - второе.
Тогда: 2n + 2(n+k) = 2*(n+n+k) = 2*(2n+k)
Результатом умножения на 2 любого целого числа будет четное число.

Теперь рассмотрим 2 нечетных числа:
        2n+1 - первое число, 2(n+k)+1 -второе число
Сумма: 2n+1 + 2(n+k)+1 = 2*(2n+k)+2 - очевидно, также четное.

Таким образом, из 2016 целых чисел всегда можно выбрать 2 числа так, чтобы их сумма была четной.

2) Нет, нельзя.
Если такое разбиение есть, то полная сумма 1 + 2 + ... + 21 разбивается на две равные части:
1. сумма всех максимальных чисел в каждой группе и
2. сумма всех остальных по всем группам.

Поскольку полная сумма 1 + 2 + ... + 21 = ((1+21) * 21):2 = 11 * 21 = 231 нечётна, то это невозможно.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота