1) -c√10; 2) 6√3 * a^8; 3) -x^9 * √-x; 4) √-b * b^10 * c^13
Объяснение:
1) -c√10 = √10 * |c| = √10 * (-c) т.к. c <= 0 по условию, поэтому: √10 * (-c) = -c√10
2)√108a^16 = √9 * 12 * (a^8)^2 = √9 * 4 * 3 *(a^8)^2 = 3√4 *3 * (a^8)^2 = 6√3 * √(a^8)^2 = 6√3 * |a^8| = 6√3 * a^8
3) √x^-19 = √-x * x^18 = √-x * (x^9)^2 = √-x * |x^9| = √-x * (-x^9) = -x^9 * √-x
4) √-b^21 * c^26 = √-b * b^20 * (c^13)^2 = √-b * √(b^10)^2 * √(c^13)^2 = √-b * |b^10| * |c^13| = √-b * b^10 * c^13
Если что-то не правильно, пишите.
sin x + cos x = 1;
Возведем правую и левую часть выражения в квадрат, тогда получим:
(sin x + cos x) ^ 2 = 1 ^ 2;
sin ^ 2 x + 2 * sin x * cos x + сos ^ 2 x = 1;
(sin ^ 2 x + cos ^ 2 x) + 2 * sin x * cos x = 1;
Так как, по формуле тригонометрии sin ^ 2 x + cos ^ 2 x = 1 и 2 * sin x * cos x = sin (2 * x), тогда получим:
1 + 2 * sin x * cos = 1;
2 * sin x * cos x = 1 - 1;
2 * sin x * cos x = 0;
sin x * cos x = 0;
1) sin x = 0;
x = pi * n, где n принадлежит Z;
2) cos x = 0;
x = pi / 2 + pi * n, где n принадлежит Z.
1) -c√10; 2) 6√3 * a^8; 3) -x^9 * √-x; 4) √-b * b^10 * c^13
Объяснение:
1) -c√10 = √10 * |c| = √10 * (-c) т.к. c <= 0 по условию, поэтому: √10 * (-c) = -c√10
2)√108a^16 = √9 * 12 * (a^8)^2 = √9 * 4 * 3 *(a^8)^2 = 3√4 *3 * (a^8)^2 = 6√3 * √(a^8)^2 = 6√3 * |a^8| = 6√3 * a^8
3) √x^-19 = √-x * x^18 = √-x * (x^9)^2 = √-x * |x^9| = √-x * (-x^9) = -x^9 * √-x
4) √-b^21 * c^26 = √-b * b^20 * (c^13)^2 = √-b * √(b^10)^2 * √(c^13)^2 = √-b * |b^10| * |c^13| = √-b * b^10 * c^13
Если что-то не правильно, пишите.
sin x + cos x = 1;
Возведем правую и левую часть выражения в квадрат, тогда получим:
(sin x + cos x) ^ 2 = 1 ^ 2;
sin ^ 2 x + 2 * sin x * cos x + сos ^ 2 x = 1;
(sin ^ 2 x + cos ^ 2 x) + 2 * sin x * cos x = 1;
Так как, по формуле тригонометрии sin ^ 2 x + cos ^ 2 x = 1 и 2 * sin x * cos x = sin (2 * x), тогда получим:
1 + 2 * sin x * cos = 1;
2 * sin x * cos x = 1 - 1;
2 * sin x * cos x = 0;
sin x * cos x = 0;
1) sin x = 0;
x = pi * n, где n принадлежит Z;
2) cos x = 0;
x = pi / 2 + pi * n, где n принадлежит Z.