Утка (3;10),(1;2),(-1;2),(3;5),(1;8),(-3;7),(-5;8),(-3;4),(-6;4),(-3;3),(-5;2),(-5;-2),(-2;-3),(-4;-4),(1;-4),(3;-3),(6;1),(9;0) и (-1;5) надо соединить эти координаты и получится утка
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Первый
(1,8 - 0,3y) * (2y + 9) = 0
(1,8 - 0,3y) = 0 (2y + 9) = 0
-0,3y = - 1,8 2y = -9
y = -1,8 : (-0,3) y = (-9) : 2
y = 6 y = -4,5
ответ: y₁ = -4,5; y₂ = 6.
Второй
(1,8 - 0,3y) * (2y + 9) = 0
3,6y + 16,2 - 0,6y² - 2,7y = 0
-0,6y² + 0,9y + 16,2 = 0
a = -0,6; b = 0,9; c = 16,2
D = b² - 4ac = 0,9² - 4 * (-0,6) * 16,2 = 0,81 + 38,88 = 39,69
Так как дискриминант больше нуля (D = 39,69), то уравнение имеет два корня:
ответ: y₁ = -4,5; y₂ = 6.