(далее предложить эти уравнения для домашней работы).
II. Решение показательных уравнений (работа в группах).
В зависимости от состава групп уровень сложности уравнений нарастает. Каждая группа решает по 3 уравнения, потом представляет свое решение (отчитывается о проделанной работе).
Две слабые группы работают с листами самопроверки, на которых предложен ход решения заданий. Остальным группам предложить карточки с ответами, которые они должны получить.
I, II группы (слабые)
1. 32х + 1 = 92х
2. 7х + 2 – 7х = 336
3. 2 * 22х – 3 * 2х – 2 = 0
Дополнительное уравнение: 9х – 3х – 6 = 0
III группа (средние)
1. 2х2 – 6х + 0,5 = 1__
16√2
2. 4х – 1 + 4х + 4х + 1 = 84
3. 34√х – 4 * 32√х + 3 = 0
IV, V группы (сильные)
1. 4 (√(3х2 – 2х)) + 1 + 2 = 9 *2√(3х2 – 2х)
2. 3 * 16х + 2 * 81х = 5 * 36х
3. 52х – 1 + 22х = 52х – 22х + 2
III. Искусственный прием решения показательных уравнений (разобрать у доски).
1) (4 + √15)х + (4 - √15)х = 8
Числа 4 + √15 и 4 - √15 являются сопряженными.
Действительно (4 + √15)(4 - √15) = 16 – 15 = 1.
Поэтому 4 - √15 = 1
4 + √15
Введем новую переменную (4 + √15)х = t > 0
Получим: t + 1/t = 8
t2 – 8t + 1 = 0
t1 = 4 + √15; t2 = 4 - √15
(4 + √15)х = 4 + √15; (4 + √15)х = 4 - √15
x = 1 (4 + √15)х = 1
4 + √15
(4 + √15)х = (4 + √15)-1
x = -1
2) Пробуют по аналогии решить самостоятельно (на обороте доски – решение для проверки).
(2 + √3)х + (2 - √3)х = 4
IV. Решение систем показательных уравнений.
1. Метод приведения к одному основанию.
1) 82х + 1 = 32 * 24у – 1
{
5 * 5х-у = √252у + 1
2) 3х * 9у = 3
{
2у - х = 1
2х 64
2. Метод введения новых переменных.
1) х + 5у + 2 = 9 5 у+2 = t
{
2х – 5у + 3 = 11
2) 3 * 7х – 3у = 12 7x = a
{
7х * 3у = 15 3y = b
Итог урока: Обобщить различные решения показательных уравнений и систем уравнений.
Домашнее задание (дифференцированное, выборка из сборников тестов подготовки к ЕНТ).
Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
Объяснение:
1) Приведения обеих частей уравнения к одному основанию.
2) Разложение на множители.
3) Введение новой переменной.
4) Логарифмирование обеих частей (о нем разговор позже).
5) Искусственные приемы.
Из предложенных уравнений выбрать те, которые соответствуют обозначенным решения (устно):
1) 5х + 1 = 125 2) 43 – 2х = 22(х - 1)
3) 2х + 2х + 1 = 12 4) 5х – 2 – 5х – 1 + 5х = 21
5) 2 * 9х – 3х + 1 – 9 = 0 6) 25х – 26 * 5х + 25 = 0
(далее предложить эти уравнения для домашней работы).
II. Решение показательных уравнений (работа в группах).
В зависимости от состава групп уровень сложности уравнений нарастает. Каждая группа решает по 3 уравнения, потом представляет свое решение (отчитывается о проделанной работе).
Две слабые группы работают с листами самопроверки, на которых предложен ход решения заданий. Остальным группам предложить карточки с ответами, которые они должны получить.
I, II группы (слабые)
1. 32х + 1 = 92х
2. 7х + 2 – 7х = 336
3. 2 * 22х – 3 * 2х – 2 = 0
Дополнительное уравнение: 9х – 3х – 6 = 0
III группа (средние)
1. 2х2 – 6х + 0,5 = 1__
16√2
2. 4х – 1 + 4х + 4х + 1 = 84
3. 34√х – 4 * 32√х + 3 = 0
IV, V группы (сильные)
1. 4 (√(3х2 – 2х)) + 1 + 2 = 9 *2√(3х2 – 2х)
2. 3 * 16х + 2 * 81х = 5 * 36х
3. 52х – 1 + 22х = 52х – 22х + 2
III. Искусственный прием решения показательных уравнений (разобрать у доски).
1) (4 + √15)х + (4 - √15)х = 8
Числа 4 + √15 и 4 - √15 являются сопряженными.
Действительно (4 + √15)(4 - √15) = 16 – 15 = 1.
Поэтому 4 - √15 = 1
4 + √15
Введем новую переменную (4 + √15)х = t > 0
Получим: t + 1/t = 8
t2 – 8t + 1 = 0
t1 = 4 + √15; t2 = 4 - √15
(4 + √15)х = 4 + √15; (4 + √15)х = 4 - √15
x = 1 (4 + √15)х = 1
4 + √15
(4 + √15)х = (4 + √15)-1
x = -1
2) Пробуют по аналогии решить самостоятельно (на обороте доски – решение для проверки).
(2 + √3)х + (2 - √3)х = 4
IV. Решение систем показательных уравнений.
1. Метод приведения к одному основанию.
1) 82х + 1 = 32 * 24у – 1
{
5 * 5х-у = √252у + 1
2) 3х * 9у = 3
{
2у - х = 1
2х 64
2. Метод введения новых переменных.
1) х + 5у + 2 = 9 5 у+2 = t
{
2х – 5у + 3 = 11
2) 3 * 7х – 3у = 12 7x = a
{
7х * 3у = 15 3y = b
Итог урока: Обобщить различные решения показательных уравнений и систем уравнений.
Домашнее задание (дифференцированное, выборка из сборников тестов подготовки к ЕНТ).
«-» 1) 5х + 1 = 125
2) 43 – 2х = 22(х - 1)
3) 2х + 2х +1 = 12
4) 5х – 2 – 5х – 1 + 5х = 21
5) 2 * 9х – 3х + 1 - 9 =0
6) 25х – 26 * 5х + 25 = 0
«+» 1) 2х + 2 - 2х + 3 – 2х+ 4 = 5х + 1 – 5х + 2
2) (√(6 – х)) (5х2 – 7,2х + 3,4 - 25) = 0
3) 2 * 25х – 5 * 10х + 2 * 4х = 0
4) 5(sinx)2 – 25cosx = 0
5) 2 * 4х + 3 * 5у = 11
{
5 * 4х + 4 *5у = 24
6) 27х = 9у
{
81х : 3у = 243
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1