Решение: Обозначим кольцевой маршрут по времени прохождения автобусов за 1(единицу) тогда интервал ожидания при курсировании 25-ти автобусов составит: 1 : 25=1/25 (времени), равный 100% При увеличении на маршрут 6-ти автобусов, при общем их количестве: 25+6=31 (автобусов), интервал ожидания при курсировании составит: 1 : 31=1/31 (времени), равный х % На основании этих данных, составим пропорцию: 1/25 - 100% 1/31 - х% х=1/31*100 :1/25=100/31 :1/25=100*25/31=2500/31≈80% Отсюда делаем вывод, что при добавлении на маршрут 6-ти автобусов, интервал ожидания уменьшится на : 100% - 80%=20%
Доказать неравенство: а⁴+b⁴ ≥ a³b+ab³ Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0 Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим: Нам надо доказать ≥. Значит, будем смотреть разность и она должна быть ≥ 0 а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) = =(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒ ⇒ а⁴+b⁴ ≥ a³b+ab³
Обозначим кольцевой маршрут по времени прохождения автобусов за 1(единицу) тогда интервал ожидания при курсировании 25-ти автобусов составит:
1 : 25=1/25 (времени), равный 100%
При увеличении на маршрут 6-ти автобусов, при общем их количестве:
25+6=31 (автобусов), интервал ожидания при курсировании составит:
1 : 31=1/31 (времени), равный х %
На основании этих данных, составим пропорцию:
1/25 - 100%
1/31 - х%
х=1/31*100 :1/25=100/31 :1/25=100*25/31=2500/31≈80%
Отсюда делаем вывод, что при добавлении на маршрут 6-ти автобусов, интервал ожидания уменьшится на :
100% - 80%=20%
ответ: Б на 20%
Тут штука такая: надо просто помнить, что если a > b, значит, a - b > 0
Эти 2 неравенства друг без друга "жить не могут". если надо доказать 1-е, надо смотреть 2-е и наоборот. Вот, давай посмотрим:
Нам надо доказать ≥.
Значит, будем смотреть разность и она должна быть ≥ 0
а⁴+b⁴ - a³b - ab³ = (а⁴ - а³b) + (b⁴ - ab³)= a³(a - b) -b³(a - b) =
=(a - b)(a³ - b³) = (a - b)(a - b)(a² +ab +b²) = (a - b)²(a² +ab + b²) - а это выражение всегда ≥ 0 ( первая скобка в квадрате, а во второй скобке сумма квадратов двух чисел всегда > их произведения.) , ⇒
⇒ а⁴+b⁴ ≥ a³b+ab³