Тогда, будет записано не более 12 чисел, и при этом, с одной стороны, последовательность будет начата с минимального числа, кратного 13, а с другой стороны, в последовательности чётные числа будут также кратны 13. Таким образом, начало последовательности должно выглядеть так: 13, 26, 39, 52, 65. Далее, чтобы сохранить нечетность членов последовательности, нужно прибавлять к каждому предыдущему чётное число, кратное 13, т. е. 26. При этом остаётся найти 7 чисел, последнее из которых будет равно 65+7*26=65+182=247. Это и есть минимально возможное М
1) Тут все просто(почти). Сначала надо проверить подходит ли оно под какую-либо формулу куба суммы. Не подходит. Дальше - смотрим на коефициент при x^3.Поскольку он равен 1, тогда уравнение можна представить в виде (x-a)(x-b)(x-c) = 0, где a,b,c- искомые корни. С даннного уравнения можна увидеть, что -a*b*c =64, тоесть там есть как минимум 1 один вещественный корень. Среди множителей числа 64 есть следующие 1,2,4,8,16,32,64. Пробуем подставить 1 или -1 - не подходит. Аналогично для 2 и -2, При x = 4 64 - 4*64 - 16*4 + 64 = 0 -> x = 4 - искомый корень. Дальше поделим уголком х^3-4x^2-16x+64 на (x-4). Можна увидеть что x^3-4x^2 = (x-4)* x^2 и что -16x+64 = -16(x-4)
Поетому х^3-4x^2-16x+64 = (x-4)(x^2 - 16) Дальше же можна увидеть что x^2-16 = (x+4)(x-4) за формулой про разницу квадратов, тогда х^3-4x^2-16x+64 = (x-4)(x+4)(x-4) Тоесть, уравнение имеет 3 решения два из которых равны x=4 и одно x = -4
Дальше - смотрим на коефициент при x^3.Поскольку он равен 1, тогда уравнение можна представить в виде
(x-a)(x-b)(x-c) = 0, где a,b,c- искомые корни.
С даннного уравнения можна увидеть, что -a*b*c =64, тоесть там есть как минимум 1 один вещественный корень. Среди множителей числа 64 есть следующие 1,2,4,8,16,32,64.
Пробуем подставить 1 или -1 - не подходит. Аналогично для 2 и -2,
При x = 4
64 - 4*64 - 16*4 + 64 = 0 -> x = 4 - искомый корень.
Дальше поделим уголком х^3-4x^2-16x+64 на (x-4).
Можна увидеть что x^3-4x^2 = (x-4)* x^2 и что -16x+64 = -16(x-4)
Поетому х^3-4x^2-16x+64 = (x-4)(x^2 - 16)
Дальше же можна увидеть что x^2-16 = (x+4)(x-4) за формулой про разницу квадратов, тогда х^3-4x^2-16x+64 = (x-4)(x+4)(x-4)
Тоесть, уравнение имеет 3 решения два из которых равны x=4 и одно x = -4
2)x^2+6x+8 = 0
ax^2+bx+c = 0
Найдем дискриминант D =b^2-4*a*c = 6*6-4*8 = 36-32 = 4 = 2^2
тогда первый корень равен x1 =(-b-sqrt(D)/2a)= (-6-2)/2 =-4
Второй: x2 =(-b+sqrt(D)/2a)= (-6+2)/2 =-2
ответ: -4, -2