В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Лази21
Лази21
07.10.2020 05:58 •  Алгебра

уже не варит((Заранее все отдаю


уже не варит((Заранее все отдаю
уже не варит((Заранее все отдаю

Показать ответ
Ответ:
илья20032101
илья20032101
15.05.2023 15:02

Так как последняя цифра четна и число кратно 5 , то она равна нулю , а само число кратно 70 , запишем его в виде : A = 49000 +100x +10y  , где x и y - число сотен и десятков числа А , х≠0 , так как двух нулей быть не должно ,  49000 кратно 70 ⇒ 100х+10y  также кратно 70 ( оно равно А -49000)   и должно быть наименьшим , рассмотрим трехзначные числа, кратные  70 -140 , 210 , 280 , 350 и т .д., наименьшее число из этой последовательности с различными четными цифрами равно 280 ⇒ А =49280

ответ  :49280

0,0(0 оценок)
Ответ:
yalunaluna
yalunaluna
15.05.2023 15:02

Цель задачи найти наименьшее число, которое делится на 35.

Разложим число 35 = 5 * 7,

значит число 49*** должно одновременно делится и на 5  и на 7.

Рассуждаем.

1) Признак делимости числа 49*** на 5 это такое число, у которого последняя цифра делится на 5. Из чётных чисел наименьшее это - 0.

Предварительно число имеет вид 49**0.


2) Рассмотрим теперь признак делимости на 7.

По определению число делится на 7 если результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.

Т.к. последняя цифра 0, то достаточно рассмотреть только число 49**.

Запишем иначе: 49ХУ, тогда из определения

(49Х - 2*У) = - этот полученный результат доложен делится на 7.

Из выражения видно, что наименьшее чётная цифра, которая будет обеспечивать признак делимости на 7 это - 0 , т.е. число 4900

тогда

490 - 2 * 0 = 490 - это число делится на 7.

Получаем наименьшее число 49000 - которое делится на 35, но по условию задачи цифры должны быть различные.

Тогда ближайшие числа которые должны делится на 7 это:

4922; 4924; 4926 и 4928

Проверим делимость на 7

492 - 2*2 = 488  ⇒  48 - 2 * 8 = 32 не делится на 7

492 - 2*4 = 484  ⇒  48 - 2 * 4 = 40 не делится на 7

492 - 2*6 = 480  ⇒  48 - 2 * 0 = 48 не делится на 7

492 - 2*8 = 476  ⇒  47 - 2 * 6 = 35 делится на 7

Окончательно запишем 49280 наименьшее число с различными цифрами, которое делится на 35

ответ: 49280 - наименьшее число которое делится на 35.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота