По условию задачи имеем две неизвестных переменных, переменная t=времени,пер-
еменная х=скорости течения реки.Составим систему линейных уравнений с двумя
переменными.
10t+xt=70 1 уравнение системы ,показывает сколько лодка по течению.
10t-xt=30 2 уравнение системы показывает сколько лодка против.
Решим систему уравнений сложения.xt и -xt противоположные числа при
сложении дают 0. Сложим почленно каждый член 1 ур с чл 2 ур получим
20t=100 выразим t, t=100:20=>t=5; Решим 2 уравнение с 1 переменной
10*5-5x=30,=>50-5x=30,=>-5х=30-50,=>-х=-20:5,=>-х=-4 значит х=4.
ответ:скорость течения реки равна 4 км/ч,а время 5 часам.
По условию задачи имеем две неизвестных переменных, переменная t=времени,пер-
еменная х=скорости течения реки.Составим систему линейных уравнений с двумя
переменными.
10t+xt=70 1 уравнение системы ,показывает сколько лодка по течению.
10t-xt=30 2 уравнение системы показывает сколько лодка против.
Решим систему уравнений сложения.xt и -xt противоположные числа при
сложении дают 0. Сложим почленно каждый член 1 ур с чл 2 ур получим
20t=100 выразим t, t=100:20=>t=5; Решим 2 уравнение с 1 переменной
10*5-5x=30,=>50-5x=30,=>-5х=30-50,=>-х=-20:5,=>-х=-4 значит х=4.
ответ:скорость течения реки равна 4 км/ч,а время 5 часам.
-(2(cosπ/3 +isinπ/3))³/√(2(cosπ/4 -isinπ/4))²⁶ =
-2³(cos3*π/3 + isin3*π/3) /2¹³(cos26*π/4 -isin26*π/4) =
-8(cosπ + isinπ) /2¹³(cos13π/2 -isin13π/2) = -8(-1+0)/2¹³(0 -i) =-2³/2¹³i = (1/21⁰)i.
* * * * * *
z =a+ib ; z =r(cosα + i sinα ) ; r =√(a²+b²) ; α =arctq(b/a)
(r(cosα+isinα) ) ^n =r^k(cosnα +i sinnα) ;
(r₁(cosα₁+isinα₁)*r₂(cosα₂+isinα₂) =(r₁*r₂) (cos(α₁+α₂) +isin(α₁+α₂)) ;
(r₁(cosα₁+isinα₁)/r₂(cosα₂+isinα₂) =(r₁/r₂) (cos(α₁-α₂) +isin(α₁-α₂)) ;
z₁ =(1+i√3) ,
модуль этого числа: r₁ =√(1² +(√3)²) =√(1 +3)=2;
аргумент этого числа : tqα =b/a =√3/1=√3 ⇒α=60° или α= π/3 радиан.
z₁ =(1+i√3) =2(cosπ/3 +isinπ/3) .