Тут рулят , кажется, если не забыл, формулы привидения. sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный. 2 | 1
3 | 4 схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)= -ctg45°
sin315°= sin(360°-45°)= -sin(45°) // тут стоит минус, так как наша функция находится в 4-ой четверти, синус это же игрек на системе координат, а игрек в 4-ой четверти отрицательный.
2 | 1
3 | 4
схематичная система координат )) тут я показал где находятся четверти.
cos315°= cos(360°-45°)= +cos45° // тут стоит плюс, так как косинус это икс и он в 4-ой четверти положительный.
tg(315°) = tg(360°-45°)= -tg(45°) // тут стоит минус, так как тангенс в 4-ой четверти отрицательный, тангенс это sin÷cos или y÷x, в нашем случаи будет так: tg(360°-45°)= -sin45°÷cos45°= -tg45°
ctg(315°) = ctg(360°-45°)= -ctg(45°) // тут все тоже самое, что и в tg , но только катангес это cos÷sin или x÷y => ctg(360°-45°)= cos45°÷(-sin45°)=
-ctg45°
1) 3a - 27/4a-36
в числителе выноси общий множитель 3 а в знаменателе 4
и будет 3(а - 9)/4(а - 9) и то что в скобках сокращаем (потому что оно одинаковое) = 3/4
2) 11(d+6)^8 / 88(d+6) = (d+ 6)^8/8
4) Приведи дроби x^2 / x^2−u2 и x−u / 7x+7u к общему знаменателю.
5. 7x^2 / 7(x+u)(x−u) и x^2−2xu+u^2 / 7(x+u)(x−u) (правильный)
5) 3x / x−11 и 8y / x+11
4. 3x^2+33x / x^2−121 и 8yx−88y / x^2−121 (правильный)
Сократите дробь 5m+an−5n−am / a^2−10a+25 до знаменателя 5−a
5m+an−5n−am / a^2−10a+25 = (5 - а)(m - n)/(5 - a)^2 = m - n/ 5 - a