В арифметической прогрессии первый член 2 и разность d=3. a) Найдите девятый член прогрессии и сумму первых девяти членов прогрессии. [3] b) Обозначим n-й член прогрессии через an. Найдите наименьшее натуральное число n такое, что an >120.
Пусть х пельменей в час - производительность Валентины, тогда (х + 2) пельменя в час - производительность Софьи. На лепку 112 пельменей Валентина затрачивает на 8 часов меньше, чем Софья на лепку 360 таких же пельменей. Уравнение:
Первого примут, если он пройдет все три дистанции. а) P(1)=0,7*0,9*0,8=0,504. И не примут с вероятностью Q(1)=1-P(1)=0,496 Второго примут с вер-тью P(2)=0,9*0,8*0,6=0,432. И не примут с Q(2)=1-P(2)=0,568. Их обоих не примут с вер-тью Q(3)=Q(1)*Q(2)=0,496*0,568=0,282 б) Примут хоть одного с вер-тью P(3)=1-Q(3)=1-0,282=0,718 в) Примут обоих с вер-тью P(4)=P(1)*P(2)=0,504*0,432=0,218 Вер-сть, что 1 примут, а 2 нет p1=P(1)*Q(2)=0,504*0,568=0,286 Вер-сть, что 2 примут, а 1 нет p2=P(2)*Q(1)=0,432*0,496=0,214 г) Вер-сть, что примут только одного P(5)=p1+p2=0,286+0,214=0,5
Пусть х пельменей в час - производительность Валентины, тогда (х + 2) пельменя в час - производительность Софьи. На лепку 112 пельменей Валентина затрачивает на 8 часов меньше, чем Софья на лепку 360 таких же пельменей. Уравнение:
360/(х+2) - 112/х = 8
360 · х - 112 · (х + 2) = 8 · х · (х + 2)
360х - 112х - 224 = 8х² + 16х
8х² + 16х - 360х + 112х + 224 = 0
8х² - 232х + 224 = 0
Разделим обе части уравнения на 8
х² - 29х + 28 = 0
D = b² - 4ac = (-29)² - 4 · 1 · 28 = 841 - 112 = 729
√D = √729 = 27
х = (-b±√D)/(2a)
х₁ = (29-27)/(2·1) = 2/2 = 1 (не подходит по условию задачи)
х₂ = (29+27)/(2·1) = 56/2 = 28
ответ: 28 пельменей в час лепит Валентина.
Проверка:
112 : 28 = 4 ч - время работы Валентины
360 : (28+2) = 360 : 30 = 12 ч - время работы Софьи
12 ч - 4 ч = 8 ч - разница
а) P(1)=0,7*0,9*0,8=0,504.
И не примут с вероятностью Q(1)=1-P(1)=0,496 Второго примут с вер-тью P(2)=0,9*0,8*0,6=0,432.
И не примут с Q(2)=1-P(2)=0,568.
Их обоих не примут с вер-тью Q(3)=Q(1)*Q(2)=0,496*0,568=0,282
б) Примут хоть одного с вер-тью
P(3)=1-Q(3)=1-0,282=0,718
в) Примут обоих с вер-тью
P(4)=P(1)*P(2)=0,504*0,432=0,218
Вер-сть, что 1 примут, а 2 нет
p1=P(1)*Q(2)=0,504*0,568=0,286
Вер-сть, что 2 примут, а 1 нет
p2=P(2)*Q(1)=0,432*0,496=0,214
г) Вер-сть, что примут только одного
P(5)=p1+p2=0,286+0,214=0,5