1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.
Найдём точку пересечения графиков, решив систему: 2x - y = 1 x + y = 5 Сложим первое со вторым: 2x + x - y + y = 1 + 5 3x = 6 x = 2 y = 5 - x = 5 - 2 = 3 Значит, графики пересекаются в точке (2; 3).
2(x + y + 1) = 1 - 2(x - 2) 2x + 2y + 2 = 1 - 2x + 4 2y = 5 - 2x - 2x - 2 2y = 3 - 4x y = -2x + 1,5 Прямые, заданные уравнением y = kx + b тогда параллельны, когда их угловые коэффициенты равны. В данном случае k = -2. Подставляем в уравнение y = kx + b значения x, y и k. 3 = -2·2 + b -4 + b = 3 b = 7 Значит, искомая прямая задана уравнение y = -2x + 7. ответ: y = -2x + 7.
2x - y = 1
x + y = 5
Сложим первое со вторым:
2x + x - y + y = 1 + 5
3x = 6
x = 2
y = 5 - x = 5 - 2 = 3
Значит, графики пересекаются в точке (2; 3).
2(x + y + 1) = 1 - 2(x - 2)
2x + 2y + 2 = 1 - 2x + 4
2y = 5 - 2x - 2x - 2
2y = 3 - 4x
y = -2x + 1,5
Прямые, заданные уравнением y = kx + b тогда параллельны, когда их угловые коэффициенты равны.
В данном случае k = -2.
Подставляем в уравнение y = kx + b значения x, y и k.
3 = -2·2 + b
-4 + b = 3
b = 7
Значит, искомая прямая задана уравнение y = -2x + 7.
ответ: y = -2x + 7.