В чаше находятся 10 шаров, на которых написаны числа 1, 2, 310. Выбираем 3 из них. В скольких случаях сумма написанных на шарах чисел будет равна 9? В скольких случаях сумма будет больше 9?
2.17 (3 твоя задача) решается по такому же алгоритму, как и 2.13 (1 задача). Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10) Тогда 10 х = 4,(4) Далее от 1-го выражения (пусть) отнимаем второе (тогда). 10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период) 9 х = 4 х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.
2.17 (3 твоя задача) решается по такому же алгоритму, как и 2.13 (1 задача). Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10) Тогда 10 х = 4,(4) Далее от 1-го выражения (пусть) отнимаем второе (тогда). 10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период) 9 х = 4 х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.
Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10)
Тогда 10 х = 4,(4)
Далее от 1-го выражения (пусть) отнимаем второе (тогда).
10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период)
9 х = 4
х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.
Алгоритм на примере 3-ей задачи, пункта А:
√0,(4). Пусть х = 0,4 (так как после запятой 1 знак, умножать надо на 10)
Тогда 10 х = 4,(4)
Далее от 1-го выражения (пусть) отнимаем второе (тогда).
10 х - 9 х = 4(4) - 0,(4) (фишка в том, чтобы сократился период)
9 х = 4
х = 4/9 => (заносим под корень и представляем в виде периодичной десятичной дроби) => √0,(6).
1-я и 3-я задачи решаются по такому принципу, а вторая вообще простенькая, спросишь у кого-нибудь в классе.