Пусть скорость первого автомобиля x км/ч, а второго x + 20 км/ч.
За один час первый автомобиль проедет: x · 1 = x км, значит за то время, за которое второй автомобиль проедет 120 км, первый автомобиль проедет: 120 - x
Составим уравнение:
( 120 - x ) ÷ x = 120 ÷ ( x + 20 )
( 120 - x ) · ( x + 20 ) = 120x
120x - x² + 2400 - 20x - 120x = 0
x² - 20x + 2400 = 0
D = 400 + 9600 = 10000
x₁ = 20 + 100 ÷ ( - 2 ) = 120 ÷ ( - 2 ) = - 60 ( но это не подходит по условию задачи )
x₂ = 20 - 100 ÷ ( - 2 ) = - 80 ÷ ( - 2 ) = 40 км/ч - скорость первого автомобиля
1) 40 + 20 = 60 ( км/ч ) - скорость второго автомобиля
Пусть скорость первого автомобиля x км/ч, а второго x + 20 км/ч.
За один час первый автомобиль проедет: x · 1 = x км, значит за то время, за которое второй автомобиль проедет 120 км, первый автомобиль проедет: 120 - x
Составим уравнение:
( 120 - x ) ÷ x = 120 ÷ ( x + 20 )
( 120 - x ) · ( x + 20 ) = 120x
120x - x² + 2400 - 20x - 120x = 0
x² - 20x + 2400 = 0
D = 400 + 9600 = 10000
x₁ = 20 + 100 ÷ ( - 2 ) = 120 ÷ ( - 2 ) = - 60 ( но это не подходит по условию задачи )
x₂ = 20 - 100 ÷ ( - 2 ) = - 80 ÷ ( - 2 ) = 40 км/ч - скорость первого автомобиля
1) 40 + 20 = 60 ( км/ч ) - скорость второго автомобиля
ответ: 40 км/ч, 60 км/ч.
Удачи! : )
Сначала всё обозначим:
ширина бассейна по условию х;
длина бассейна х+6;
ширина прямоугольника,в котором находится бассейн, х + 1 (добавилось по 0,5 м с каждой стороны за счёт дорожки);
длина этого же прямоугольника х + 7 (также добавилось по 0,5 м с двух сторон за счёт дорожки).
Дальше из площади большого прямоугольника вычитаем площадь малого(бассейн) и получаем разницу 15 кв.метров - площадь всей дорожки по условию:
(x+7) *(x+1) - (x+6) * x = 15
x^2 + x + 7x - x^2 - 6x = 15 2x=8 x=4(ширина бас.); 4+6=10 (длина бас.).