Відомо ,що 25% одного числа дорівнюють 20% другого числа,а 1/6 першого числа на 4 менше від 40% другого. Знайдіть дані числа? Будь ласка повне рішення
Будем считать, что они отвечают на тест с двумя вариантами ответа. (Иначе возникнет вопрос - сколько есть правильных и неправильных ответов, от этого будет зависеть ответ). Также считаем, что отвечают ученики независимо от учителя.
Пусть мальчиков M и девочек D. Тогда вероятность правильного ответа у случайно выбранного ученика равна p = M / (M + D) * beta + D / (M + D) * gamma.
Теперь будем решать такую задачу: учитель отвечает верно с вероятностью alpha, ученик отвечает верно с вероятностью p. Найти вероятность того, что они ответят одинаково. При каком p эта вероятность = 1/2?
Конечно, P(одинаково) = P(уч-к ошибся|уч-ль ошибся) + P(уч-к верно|уч-ль верно) = alpha p + (1 - alpha)(1 - p) = alpha p + 1 - alpha - p + alpha p = p(2alpha - 1) + (1 - alpha) = 1/2 p(2alpha - 1) = alpha - 1/2 p = 1/2 (*) или alpha = 1/2 (**)
(*) M / (M + D) * beta + D / (M + D) * gamma = 1/2 M beta + D gamma = 1/2 (M + D) M/D beta + gamma = 1/2 M/D + 1/2 M/D (beta - 1/2) = 1/2 - gamma Если beta не равна 1/2, ответ M/D = (1 - 2gamma)/(2beta - 1) Если beta = gamma = 1/2, то M/D - любое. Если beta = 1/2 и gamma != 12, то M/D = infty, т.е. D = 0 и M != 0.
(**) Если alpha = 1/2, то p может принимать любые значения, тогда ничего узнать не удастся.
ответ. Если alpha = 1/2 или beta = gamma = 1/2, то отношение может быть любым, иначе оно равно (1 - 2gamma))/(2beta - 1)
Пусть мальчиков M и девочек D. Тогда вероятность правильного ответа у случайно выбранного ученика равна p = M / (M + D) * beta + D / (M + D) * gamma.
Теперь будем решать такую задачу: учитель отвечает верно с вероятностью alpha, ученик отвечает верно с вероятностью p. Найти вероятность того, что они ответят одинаково. При каком p эта вероятность = 1/2?
Конечно, P(одинаково) = P(уч-к ошибся|уч-ль ошибся) + P(уч-к верно|уч-ль верно) = alpha p + (1 - alpha)(1 - p) = alpha p + 1 - alpha - p + alpha p = p(2alpha - 1) + (1 - alpha) = 1/2
p(2alpha - 1) = alpha - 1/2
p = 1/2 (*) или alpha = 1/2 (**)
(*)
M / (M + D) * beta + D / (M + D) * gamma = 1/2
M beta + D gamma = 1/2 (M + D)
M/D beta + gamma = 1/2 M/D + 1/2
M/D (beta - 1/2) = 1/2 - gamma
Если beta не равна 1/2, ответ
M/D = (1 - 2gamma)/(2beta - 1)
Если beta = gamma = 1/2, то M/D - любое.
Если beta = 1/2 и gamma != 12, то M/D = infty, т.е. D = 0 и M != 0.
(**) Если alpha = 1/2, то p может принимать любые значения, тогда ничего узнать не удастся.
ответ. Если alpha = 1/2 или beta = gamma = 1/2, то отношение может быть любым, иначе оно равно (1 - 2gamma))/(2beta - 1)
2x - y = -3; <=> y = 2x + 3. (1)
3x + y = -2; <=> y = -3x - 2. (2)
Построим графики функций (1) и (2). Координаты точки их пересечения и будут решением системы.
Функции (1) и (2) линейные, то есть их графиками являются прямые. Для построения прямой достаточно двух точек.
Строим график функции (1): при x = 0 y = 3; при x = 1 y = 5. Через точки (0, 3) и (1, 5) проводим прямую.
Строим график функции (2): при x = 0 y = -2; при x = -1 y = 1. Через точки (0, -2) и (-1, 1) проводим прямую.
По чертежу очевидно, что графики функций (1) и (2) пересекаются в точке (-1, 1). Следовательно, (-1, 1) - решение системы.
ответ: (-1, 1).
Чертеж: