xy + x - y = 7 xy + x - y = 7 Замена: xy = а; x - y = b
x²y - xy² = 6 xy(x - y) = 6
a + b = 7
ab = 6 Систему решаем, применив т. Виета.
a₁ = 1 или a₂ = 6
b₁ = 6 b₂ = 1
Обратная замена:
1) xy = 1 или 2) xy = 6
x - y = 6 x - y = 1
Решаем каждую систему совокупности:
1) xy = 1 (6 + y)y = 1; 6y + y² = 1; y² + 6y - 1 = 0;
x = 6 + y y₁ = -3 + √10; y₂ = -3 - √10
x₁ = 3 + √10; x₂ = 3 - √10
(3 + √10; -3 + √10), (3 - √10; -3 - √10).
2) xy = 6 (y + 1)y = 6; y² + y - 6 = 0;
x = y + 1 y₁ = -3; y₂ = 2
x₁ = -2; x₂ = 3
(-3; -2), (3; 2)
ответ: (3 + √10; -3 + √10), (3 - √10; -3 - √10), (-3; -2), (3; 2).
xy + x - y = 7 xy + x - y = 7 Замена: xy = а; x - y = b
x²y - xy² = 6 xy(x - y) = 6
a + b = 7
ab = 6 Систему решаем, применив т. Виета.
a₁ = 1 или a₂ = 6
b₁ = 6 b₂ = 1
Обратная замена:
1) xy = 1 или 2) xy = 6
x - y = 6 x - y = 1
Решаем каждую систему совокупности:
1) xy = 1 (6 + y)y = 1; 6y + y² = 1; y² + 6y - 1 = 0;
x = 6 + y y₁ = -3 + √10; y₂ = -3 - √10
x₁ = 3 + √10; x₂ = 3 - √10
(3 + √10; -3 + √10), (3 - √10; -3 - √10).
2) xy = 6 (y + 1)y = 6; y² + y - 6 = 0;
x = y + 1 y₁ = -3; y₂ = 2
x₁ = -2; x₂ = 3
(-3; -2), (3; 2)
ответ: (3 + √10; -3 + √10), (3 - √10; -3 - √10), (-3; -2), (3; 2).
x(3x-4)=0
x=0 или 3x-4=0
3x=4
x=4|3
2)4x^2-9=0
(2x-3)(2x+3)=0
2x-3=0 или 2x+3=0
2x=3 2x=-3
x=3|2 x=-3|2
3)-5x^2+6x=0
x(-5x+6)=0
x=0 или -5x+6=0
-5x=-6
x=6|5
4)-x^2+3=0
x^2=3
x=+-√3