Відомо що деякий біатлоніст влучає в мішень з ймовірністю більшою за 0.8 але меншою за 0.85 яке число найбільш точно відображає приблизну кількість пострілів під час тренування якщо в них біатлоніст мав 14 влучень у мішень
Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:
b1/(1+q)=16/3; b1*q=4
Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8, b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.
ответ: 40,3 км/час.
Объяснение:
Решение.
Пусть собственная скорость катера равна х км/час.
Тогда скорость по течению равна х+4 км/час,
a скорость против течения равна х-4 км/час.
Время затраченное на прохождение по течению равно
t1=S/v1=48/(x+4),
а время на прохождения против течения равно
t2=S/v2 = 48/(x-4).
Общее время равно 2 часа 24 минуты =2,4 часа.
Составим уравнение:
48/(х+4) + 48/(х-4) = 2,4;
48(x-4)+48(x+4)=2.4(x+4)(x-4);
48x - 192 + 48x+192 = 2.4x² - 38.4;
2.4x² - 96x - 38.4 =0;
x² - 40x - 16=0;
D=(-40)²-4*1*(-16)=1600+64=1664>0 - 2 корня.
х1,2=(-(-40) ±√1664) / 2=(40±8√26)/2 = 20±4√26;
х1=40,3 х2= -0,396 - не соответствует условию.
х = 40,3 км/час- собственная скорость катера.
Проверим
48/(40,3+4) + 48/(40,3-4)=2,4;
48/44,3 + 48/36,3 = 2,4;
1,08 + 1,32 = 2,4;
2,4=2,4.
Все верно!
b1/(1+q)=16/3;
b1*q=4
Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.