Объяснение:
4. x₃=20 x₅=-40 S₉=?
{x₃=x₁+2d=20
{x₅=x₁+4d=-40
Вычитаем из второго уравнения первое:
2d=-60 |÷2
d=-30.
x₁+2*(-30)=20
x₁-60=20
x₁=80.
x₉=x₁+8d=
S₅=80+8*(-30)=80+(-240)=80-240=-160.
S₉=(80+(-160)*9/2=(80-160)*9/2=-80*9/2=-40*9=-360.
ответ: S₉=-360.
5. S₃=168 S₄₊₅₊₆=21 S₅=?
{S₃=b₁+b₁q+b₁q²=168 {b₁*(1+q+q²)=168
{S₄₊₅₊₆=b₁q³+b₁q⁴+b₁q⁵ {b₁q³*(1+q+q²)=21
Разделим второе уравнение на первое:
q³=1/8=(1/2)³
q=1/2.
b₁*(1+(1/2)+(1/2)²)=168
b₁*(1+(1/2)+(1/4))=168
b₁*(1³/₄)=168
(7/4)*b₁=168
b₁=168*4/7=24*4
b₁=96.
S₅=96*(1-(1/2)⁵)/(1-(1/2))=96*(1-(1/32))/(1/2)=96*(31/32)/(1/2)=
=(96*31/32)/(1/2)=31*3/(1/2)=93*2=186.
ответ: S₅=186.
2/ y1=3 y=1/y(n-1) y2=1/3 y3=1/1/3=3 y4=1/3
3/ 25 30 35... d=5 an=25+5(n-1)
4/ 27, -9, 3 q=-9/27= -1/3 b8=27*(-1/3)⁷
5/ 16.8,16.5, 16.2 a1=16.8 d=16.5-16.8 = -0.3
16.8-0.3(n-1)<0 0.3n-0.3>16.8 0.3n>17.1 n>57 начиная с номера 58
6/ b2=1/16 b4=1 b1*q=1/16 b1*q³=1 b1q³/b1q=q²=16
q=4 b1=1/q³ b1=1/64 b6=4⁵/4⁴=4
s6=(b6*q-b1)/(q-1) s6=(4*4-1/64)/3=5 21/64
б7/ на 5 делятся 100, 105, 115, 120,125,130,135
a1=100 d=5 an=100+5(n-1)<1000 n-1<900/5=180 n<181 n=180
a180=100+5*179=995 s0=(100+995)*180/2=98550
на 7 ДЕЛЯТСЯ 105=7*15, 140=7*20, 175=7*25, 210=7*30...
105,140,175, 210 a1=105 d=35
an=105+35(n-1)<1000 n-1<25.5 n=26 a26=105+35*25=980
(a1+an)n/2 =s=(105+980)*26/2=14105
искомая сумма 98550 -14105 =84445
Объяснение:
4. x₃=20 x₅=-40 S₉=?
{x₃=x₁+2d=20
{x₅=x₁+4d=-40
Вычитаем из второго уравнения первое:
2d=-60 |÷2
d=-30.
x₁+2*(-30)=20
x₁-60=20
x₁=80.
x₉=x₁+8d=
S₅=80+8*(-30)=80+(-240)=80-240=-160.
S₉=(80+(-160)*9/2=(80-160)*9/2=-80*9/2=-40*9=-360.
ответ: S₉=-360.
5. S₃=168 S₄₊₅₊₆=21 S₅=?
{S₃=b₁+b₁q+b₁q²=168 {b₁*(1+q+q²)=168
{S₄₊₅₊₆=b₁q³+b₁q⁴+b₁q⁵ {b₁q³*(1+q+q²)=21
Разделим второе уравнение на первое:
q³=1/8=(1/2)³
q=1/2.
b₁*(1+(1/2)+(1/2)²)=168
b₁*(1+(1/2)+(1/4))=168
b₁*(1³/₄)=168
(7/4)*b₁=168
b₁=168*4/7=24*4
b₁=96.
S₅=96*(1-(1/2)⁵)/(1-(1/2))=96*(1-(1/32))/(1/2)=96*(31/32)/(1/2)=
=(96*31/32)/(1/2)=31*3/(1/2)=93*2=186.
ответ: S₅=186.