Відстань між пристанями А і В дорівнює 72км. Моторний човен проходить з А в В і повертається назад за 10 годин. Знайдіть швидкість течії, якщо власна швидкість човна становить 15 км/год
Парабола – график квадратичной функции. Этот график позволяет прослеживать основные свойства функции в зависимости от вида квадратичной функции.
Существуют различные преобразования графиков, если тебе нужно узнать поподробнее об этом напиши в комментариях и я объясню.
Мы рассмотрим только все самое основное.
В функции y= a
От коэффициента а зависит то куда направлены ветви параболы и то, как они идут.
Если коэффициент а>0, тогда ветви будут идти вверх.
Если коэффициент а<0, тогда ветви будут идти вниз.
От этого коэффициента и зависит то, как они выглядят.
Если коэффициент больше 1, то парабола будет идти резче вверх, а то, насколько он больше 1 будет показателем того насколько она идет резче по оси оу.
Если коэффициент больше 0, но меньше 1, то парабола будет более прижатой к оси абсцисс (ох), а коэффициент будет показателем того насколько она прижата к оси.
Для этого на примере рассмотрим графики функций у= , у=2 и у=
Заранее прощения не за самые ровные графики.
На этом графике мы видим подтверждение ранее сказанного правила.
По функции можно сразу определять каким будет график параболы.
Пусть скорость мотоциклиста после остановки x км/ч, тогда до остановки он двигался со скоростью (x−15) км/ч.
За счёт увеличения скорости на расстоянии 60 км он ликвидировал отставание 12 мин = ⅕ часа. составляем уравнение: 60/(x−15) − 60/x = ⅕; 300(x−(x−15))/[x(x−15)] = 1; x²−15x−4500 = 0; x = (15+√(225+18 000))/2 = (15+135)/2 = 75 (км/ч).
Проверяем: до остановки мотоциклист ехал со скоростью 75−15 = 60 км/ч; тогда 60/60 − 60/75 = 1−⅘ = ⅕ (Ok).
ОТВЕТ: после остановки мотоциклист ехал со скоростью 75 км/ч.
Парабола – график квадратичной функции. Этот график позволяет прослеживать основные свойства функции в зависимости от вида квадратичной функции.
Существуют различные преобразования графиков, если тебе нужно узнать поподробнее об этом напиши в комментариях и я объясню.
Мы рассмотрим только все самое основное.
В функции y= a
От коэффициента а зависит то куда направлены ветви параболы и то, как они идут.
Если коэффициент а>0, тогда ветви будут идти вверх.
Если коэффициент а<0, тогда ветви будут идти вниз.
От этого коэффициента и зависит то, как они выглядят.
Если коэффициент больше 1, то парабола будет идти резче вверх, а то, насколько он больше 1 будет показателем того насколько она идет резче по оси оу.
Если коэффициент больше 0, но меньше 1, то парабола будет более прижатой к оси абсцисс (ох), а коэффициент будет показателем того насколько она прижата к оси.
Для этого на примере рассмотрим графики функций у= , у=2 и у=
Заранее прощения не за самые ровные графики.
На этом графике мы видим подтверждение ранее сказанного правила.
По функции можно сразу определять каким будет график параболы.
Пусть скорость мотоциклиста после остановки x км/ч, тогда до остановки он двигался со скоростью (x−15) км/ч.
За счёт увеличения скорости на расстоянии 60 км он ликвидировал отставание 12 мин = ⅕ часа. составляем уравнение:
60/(x−15) − 60/x = ⅕;
300(x−(x−15))/[x(x−15)] = 1;
x²−15x−4500 = 0;
x = (15+√(225+18 000))/2 = (15+135)/2 = 75 (км/ч).
Проверяем: до остановки мотоциклист ехал со скоростью 75−15 = 60 км/ч;
тогда 60/60 − 60/75 = 1−⅘ = ⅕ (Ok).
ОТВЕТ: после остановки мотоциклист ехал со скоростью 75 км/ч.