начерти координатную вот и поставь данные точки. Слева и справа у тебя будет плавная дуга.
y = x+1 точки: (0;1) (1;2) (-1;0) также ставишь точки и соединяешь - получится прямая. Она пересечет гиперболу в двух или в одной точке. Ищешь координаты и записываешь.
Либо: 2/x = x+1 2 = x(x+1) 2 = x^2 + x x^2 + x - 2 = 0 D = 1 + 8 = 9 x = (-1 + 3) * 0.5 = 1 х = (-1 - 3) * 0.5 = -2
У нас в итоге будет два числа: неизвестное (которое или которые станет/станут известным/и) и второе – разность изначально неизвестного и известного которая должна выражать дату (в каком-то неизвестном представлении).
Обозначим второе число (дата), как тогда неизвестное число должно выглядеть, как: и должно выполняться равенство: или, иначе говоря: ;
Запишем это в столбик:
Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:
где: – возможная добавочная единица, уходящая из первого и приходящая во второй разряд:
– возможная добавочная единица, уходящая из второго и приходящая в третий разряд:
– возможная добавочная единица, уходящая из третьего разряда в четвёртый:
После сложения уравнений системы, получаем:
;
Это возможно, только если и при ;
Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.
Тогда получим 6 возможных вариантов разностного числа:
Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а поскольку так как с этой цифры начинается разностное число.
Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку .
Стало быть, дни месяца и месяц расположены в разрядах: .
Тогда остаётся три варианта разностного числа:
отсюда:
------------------
Рассмотрим первый вариант: здесь может играть роль апреля.
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
Возможны только случаи:
;
;
;
;
;
Учитывая, что:
получаем разностные числа:
– дата 12/04/56 г. – дата 15/04/86 г. – дата 21/04/47 г. – дата 24/04/77 г. – дата 24/04/38 г.
------------------
Рассмотрим второй вариант: здесь может играть только роль числа месяца (дня).
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
y(1) = 2 (1;2)
y(2) = 1 (2;1)
y(0.5) = 4 (1/2 ; 4)
y(4) = 0.5 (4 ; 1/2)
y(-1) = -2 (-1;-2)
y(-2) = -1 (-2;-1)
y(-0.5) = -4 (-1/2; -4)
y(-4) = - 0.5 (-4; -1/2)
начерти координатную вот и поставь данные точки. Слева и справа у тебя будет плавная дуга.
y = x+1
точки:
(0;1)
(1;2)
(-1;0)
также ставишь точки и соединяешь - получится прямая. Она пересечет гиперболу в двух или в одной точке. Ищешь координаты и записываешь.
Либо:
2/x = x+1
2 = x(x+1)
2 = x^2 + x
x^2 + x - 2 = 0
D = 1 + 8 = 9
x = (-1 + 3) * 0.5 = 1
х = (-1 - 3) * 0.5 = -2
Обозначим второе число (дата), как
тогда неизвестное число должно выглядеть, как:
и должно выполняться равенство:
или, иначе говоря: ;
Запишем это в столбик:
Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:
где: – возможная добавочная единица, уходящая из первого
и приходящая во второй разряд:
– возможная добавочная единица, уходящая из второго
и приходящая в третий разряд:
– возможная добавочная единица,
уходящая из третьего разряда в четвёртый:
После сложения уравнений системы, получаем:
;
Это возможно, только если и при ;
Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.
Тогда получим 6 возможных вариантов разностного числа:
Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а поскольку так как с этой цифры начинается разностное число.
Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку .
Стало быть, дни месяца и месяц
расположены в разрядах: .
Тогда остаётся три варианта разностного числа:
отсюда:
------------------
Рассмотрим первый вариант:
здесь может играть роль апреля.
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
Возможны только случаи:
;
;
;
;
;
Учитывая, что:
получаем разностные числа:
– дата 12/04/56 г.
– дата 15/04/86 г.
– дата 21/04/47 г.
– дата 24/04/77 г.
– дата 24/04/38 г.
------------------
Рассмотрим второй вариант:
здесь может играть только роль числа месяца (дня).
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
;
Возможен только один случай:
;
Учитывая, что:
получаем разностное число:
– дата 11/15/46 г.
продолжение >>>