1) x²+12x>0; x(x+12)>0; Нули неравенства: x=-12 или x=0. Ветви параболы направлены вверх, значит решением являются промежутки: (-∞;-12)∪(0;+∞). 2) 2x²-3x<0; x(2x-3)<0; Нули неравенства: х=0 или 2х-3=0; 2х=3; х=1,5. Ветви параболы направлены вверх, значит решением является промежуток: (0;1,5). 3) x²-7x-18>0; Находим нули неравенства: D=49+72=121; x1=(7-11)/2=-4/2=-2; x2=(7+11)/2=18/2=9. Ветви параболы направлены вверх, значит решением являются промежутки: (-∞;-2)∪(9;+∞). 4) x²-14x>0; x(x-14)>0; Нули неравенства: х=0 или х=14. Ветви параболы направлены вверх, значит решением являются промежутки: (-∞;0)∪(14;+∞). 5) 3x²+5x<0; х(3х+5)<0; Нули неравенства: 3х+5=0 или х=0; 3х=-5 х=-5/3. Ветви параболы направлены вверх, значит решением является промежуток: (-5/3;0). 6) x²-5x-24<0; Находим нули неравенства: D=25+96=121; x1=(5-11)/2=-6/2=-3; x2=(5+11)/2=16/2=8. Ветви параболы направлены вверх, значит решением является промежуток: (-3;8).
7/4*cos(x/4) = cos^3(x/4) + 2sin(x/4)*cos(x/4)
cos^3(x/4) + cos(x/4)*(2sin(x/4) - 7/4) = 0
cos(x/4)*(cos^2(x/4) + 2sin(x/4) - 7/4) = 0
1) cos(x/4) = 0; x/4 = pi/2 + pi*k; x1 = 2pi + 4pi*k
2) 1 - sin^2(x/4) + 2sin(x/4) - 7/4 = 0
Умножаем все на -1 и делаем замену sin(x/4) = y
y^2 - 2y + 7/4 - 1 = 0
y^2 - 2y + 3/4 = 0
D/4 = 1 - 3/4 = 1/4 = (1/2)^2
y1 = sin(x/4) = 1 - 1/2 = 1/2; x/4 = (-1)^n*pi/6 + pi*n; x2 = (-1)^n*2pi/3 + 4pi*n
y2 = sin(x/4) = 1 + 1/2 = 3/2 - решений нет, потому что sin x <= 1
ответ: x1 = 2pi + 4pi*k; x2 = (-1)^n*2pi/3 + 4pi*n
x(x+12)>0;
Нули неравенства:
x=-12 или x=0.
Ветви параболы направлены вверх, значит решением являются промежутки:
(-∞;-12)∪(0;+∞).
2) 2x²-3x<0;
x(2x-3)<0;
Нули неравенства:
х=0 или 2х-3=0;
2х=3;
х=1,5.
Ветви параболы направлены вверх, значит решением является промежуток:
(0;1,5).
3) x²-7x-18>0;
Находим нули неравенства:
D=49+72=121;
x1=(7-11)/2=-4/2=-2;
x2=(7+11)/2=18/2=9.
Ветви параболы направлены вверх, значит решением являются промежутки:
(-∞;-2)∪(9;+∞).
4) x²-14x>0;
x(x-14)>0;
Нули неравенства:
х=0 или х=14.
Ветви параболы направлены вверх, значит решением являются промежутки:
(-∞;0)∪(14;+∞).
5) 3x²+5x<0;
х(3х+5)<0;
Нули неравенства:
3х+5=0 или х=0;
3х=-5
х=-5/3.
Ветви параболы направлены вверх, значит решением является промежуток:
(-5/3;0).
6) x²-5x-24<0;
Находим нули неравенства:
D=25+96=121;
x1=(5-11)/2=-6/2=-3;
x2=(5+11)/2=16/2=8.
Ветви параболы направлены вверх, значит решением является промежуток:
(-3;8).