Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
a² = 12 b² = 3
c² = a² - b² = 12 - 3 = 9 ⇒ c = 3
Фокусы имеют координаты :
F₁ (0; - c) , F₂ (0 ; c) , где c = 3
Значит F₁(0 ; - 3) , F₂(0 ; 3)
Расстояние между фокусами равно 2с, а значит равно : 2 * 3 = 6
6.2)
a² = 10 b² = 26
Аналогично
c² = 26 - 10 = 16 ⇒ c = 4
Координаты фокусов :
F₁(0 ; - 4) , F₂(0 , 4)
Расстояние между фокусами равно 2с, то есть 8.
7.1)
a² = 25 ⇒ a = 5 b² = 9 ⇒ b = 3
c² = a² - b² = 25 - 9 = 16 ⇒ c = 4
В данном случае a > b поэтому эксцентриситетом будет отношение :
e = c/a = 4/5
7.2)
a² = 7 ⇒ a = √7 b² = 16 ⇒ b = 4
В этом случае b > a , поэтому :
c² = b² - a² = 16 - 7 = 9 ⇒ c = 3
e = c/b = 3/4