Возьмем за х период разложения консервной банки ,тогда (х+10) период разложения фильтра от сигареты с сзданием материалов ,разложение фильтра уменьшилось в 2 раза (х+10)/2 и разница между периодами разложения будет 32 года (х+10) - (х+10)/2=32 2х+20-х-10=64 х=54 года разлагается консервная банка 54+10=64 года разлагался фильтр с созданием материалов ,разлагающихся под воздействием света ,разложение фильтра уменьшилось в 2 раза , 64:2=32 года теперь разлагается фильтр. Достижения науки!
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
(х+10) период разложения фильтра от сигареты
с сзданием материалов ,разложение фильтра уменьшилось в 2 раза
(х+10)/2
и разница между периодами разложения будет 32 года
(х+10) - (х+10)/2=32
2х+20-х-10=64
х=54 года разлагается консервная банка
54+10=64 года разлагался фильтр
с созданием материалов ,разлагающихся под воздействием света ,разложение фильтра уменьшилось в 2 раза , 64:2=32 года теперь разлагается фильтр. Достижения науки!
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1