В каком случае даны обратно пропорциональные величины?
1 Величина угла ромба и площадь ромба
2 Цена груш и их количество, которое можно купить на 371.3 рублей
3 Количество участников экспедиции и количество взятых с собой продуктов, если маршрут не меняется
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
1) у=2х³+6х²=3
у'=6х²+12х=6х*(х+2)≥0
-20
+ - +
на отрезка [-2;0] функция убывает на (-∞-2] и[0;+∞) функция возрастает
2) f(x)=2+5x³+x
f'(x)=10x²+1 производная на всей области определения положительна,значит функция возрастает на (-∞;+∞)
3) f(x)=3x+x²/4+x
f'(x)=3+x/2+1=4+x/2≥0, при х≥-8 функция возрастает, при х≤8 убывает.
если условие со скобками, тогда f'(x)=((3x+x²)/(4+x))'=
(8x+2x²-3x-x²)/(4+x)²=(x²+5x)/(4+x)²≥0 решим методом интервалов.
___-5-40
+ - - + возрастает на (-∞;-5] и [0;+∞] убывает функция на промежутках [-5;-4) и(-4;0]
2. Найдем производную от f(x)=4-2x+1/2x²-1/3x³; f'(x)=-2+x-x²≥0
-(x²-x+2); т.к. x²-x+2>0 при любом значении х, что следует из того, что дискриминант 1-8=-7- отрицателен, а первый коэффициент 1 положителен, значит, -(x²-x+2)<0 при любом значении х, т.е. на R функция убывает. Доказано.
3. это уравнение параболы, абсцисса ее вершины равна -1.5/а, как известно, в зависимости от направления ветвей параболы будет зависеть возрастание и убывание функции, но на R она не возрастает, если же а=0, то f(x)=3x+5 -линейная функция, т.к. ее угловой коэффициент положителен. то функция возрастает на всей действительной оси.
ответ при а=0