2) Значение полученной дроби при х = -2 равно нулю.
Объяснение:
Если заметить, что 8 = 2³, а 4 = 2², то напрашивается использование формулы суммы кубов:
для приведения всех дробей к единому знаменателю.
Домножим у каждой дроби числитель и знаменатель на недостающие множители:
После сокращения мы получаем вполне "красивую" дробь:
Однако - стоит отметить, что строго говоря, данная дробь не равносильна исходной.
При сокращении мы убрали из знаменателя множитель (х+2), поэтому, несмотря на то, что полученное в конце выражение при х=-2 имеет вполне конкретное и определенное значение,
(!) при х = -2 исходное выражение не определено, что обязательно нужно указать и учитывать при сокращении дробей!
Однако нас просят найти значение полученной дроби, что вполне реально. Итак:
при значение выражения равно:
Итак, ответ:
1) После преобразования получена дробь:
2) Значение полученной дроби при х = -2 равно нулю.
б) Самое распространенное число прочитанных книг равно 3 (т.к. по 3 книги прочитали 5 школьников).
в) Проверяем таблицу относительных частот на непротиворечивость. Для этого складываем все значения относительных частот и проверяем, равна ли их сумма числу 1.
1) После преобразования получена дробь:
2) Значение полученной дроби при х = -2 равно нулю.
Объяснение:
Если заметить, что 8 = 2³, а 4 = 2², то напрашивается использование формулы суммы кубов:
для приведения всех дробей к единому знаменателю.
Домножим у каждой дроби числитель и знаменатель на недостающие множители:
После сокращения мы получаем вполне "красивую" дробь:
Однако - стоит отметить, что строго говоря, данная дробь не равносильна исходной.
При сокращении мы убрали из знаменателя множитель (х+2), поэтому, несмотря на то, что полученное в конце выражение при х=-2 имеет вполне конкретное и определенное значение,
(!) при х = -2 исходное выражение не определено, что обязательно нужно указать и учитывать при сокращении дробей!
Однако нас просят найти значение полученной дроби, что вполне реально. Итак:
при значение выражения равно:
Итак, ответ:
1) После преобразования получена дробь:
2) Значение полученной дроби при х = -2 равно нулю.
а) Строим таблицу абсолютных и относительных частот
Кол-во книг 0 1 2 3 4 5 6
Кол-во школьников
(абсолютная частота) 2 4 3 5 2 3 1 20
Относит. частота 0,1 0,2 0,15 0,25 0,1 0,15 0,05 1
Комментарий к составлению таблицы:
Известно, что количество школьников равно сумме абсолютных частот, т.е. 20 (2+4+3+5+2+3+1=20)
Чтобы найти относительную частоту, надо абсолютную частоту разделить на сумму абсолютных частот
2/20=0,1; 4/20=0,2; 3/20=0,15; 5/20\0,25; 1/20=0,05
б) Самое распространенное число прочитанных книг равно 3 (т.к. по 3 книги прочитали 5 школьников).
в) Проверяем таблицу относительных частот на непротиворечивость. Для этого складываем все значения относительных частот и проверяем, равна ли их сумма числу 1.
0,1+0,2+0,15+0,25+0,1+0,15+0,05 = 1 (верно)
Вывод: Таблица относительных частот непротиворечива.