Автобусы составляют 5/14 всех машин автопарка, грузовики -7/18 остальных. Кроме них в парке 33 легковые машины. Сколько всего машин в автопарке?
кроме автобусов в парке есть остальные машины. Из условия видно что остальных машин 18/18, из которых 7/18 грузовики, и 11/18 – 33 легковых машины
Если 11/18 =33, то 7/18 составит 33/11*7=21 грузовик
Теперь видим, что 33 легковых и 21 грузовик (это 54 машины) составляют 9/14 от всех машин в парке. То есть 9/14=54, а 5/14, которые автобусы, соответственно равны 54/9*5=30
Откуда находим: 33 легковых+21 грузовик+30 автобусов=84 машины
Производную надо скорее знать, чем понимать, то есть с заученными правилами ты без проблем сможешь решить любую задачку на производную. Во вложениях я оставлю некоторые правила дифференцирования и прозводные некоторых элементарных функций.
Но вернемся к нашим баранам. Задача 2.
f=(1+2x)/(1-2x). По правилу производной от частного:
84
Объяснение:
Автобусы составляют 5/14 всех машин автопарка, грузовики -7/18 остальных. Кроме них в парке 33 легковые машины. Сколько всего машин в автопарке?
кроме автобусов в парке есть остальные машины. Из условия видно что остальных машин 18/18, из которых 7/18 грузовики, и 11/18 – 33 легковых машины
Если 11/18 =33, то 7/18 составит 33/11*7=21 грузовик
Теперь видим, что 33 легковых и 21 грузовик (это 54 машины) составляют 9/14 от всех машин в парке. То есть 9/14=54, а 5/14, которые автобусы, соответственно равны 54/9*5=30
Откуда находим: 33 легковых+21 грузовик+30 автобусов=84 машины
Производную надо скорее знать, чем понимать, то есть с заученными правилами ты без проблем сможешь решить любую задачку на производную. Во вложениях я оставлю некоторые правила дифференцирования и прозводные некоторых элементарных функций.
Но вернемся к нашим баранам. Задача 2.
f=(1+2x)/(1-2x). По правилу производной от частного:
f'=((1+2x)' * (1-2x) - (1-2x)' * (1+2x)) / (1-2x)^2 =
=(2*(1-2x) - (-2)*(1+2x)) / (1-2x)^2 =
= (2-4x+2+4x) / (1-2x)^2 = 4 / (1-2x)^2
Итого f'(0)=4/(1-0)^2 = 4.
Задача 4.
f=ln(sqrt(x^2+1))
По свойству производной от логарифма:
f' = (sqrt(x^2+1))' / sqrt(x^2+1)
По свойству производной от корня (рассмотрим только числитель):
g' = (sqrt(x^2+1))' = ((x^2+1)^(1/2))' = (1/2) * (1/sqrt(x^2+1)) * (x^2+1)'
Ну и оставшаяся производная равна
h' = (x^2+1)' = 2x
Итак, собираем все вместе:
f' = g'/sqrt(x^2+1) = h'/(2*(x^2+1) = x/(x^2+1)
Фух, теперь ищем желанное f'(1):
f'(1)=1/(1+1)=1/2
Ну вот вроде и все, если будут вопросы - пиши, попытаюсь ответить.