1) Матрица линейного оператора выглядит следующим образом
α₁₁ α₁₂
α₂₁ α₂₂
Составим соответствующие уравнения после действия этого оператора
5α₁₁+4α₁₂=11
5α₂₁+4α₂₂=25
4α₁₁-3α₁₂=-16
4α₂₁-3α₂₂=-11
Решая систему находим элемениы матрицы
α₁₁=-1 α₁₂=4
α₂₁= 1 α₂₂=5
ответ: 9
2) Составим матрицу оператора
1 7 8
-5 -1 8
-2 -4 1
Транспонируем ее
1 -5 -2
7 -1 -4
8 8 1
ответ: 17
3) Решим соответствующее характеристическое уравнение
Для всех собственных значений найдем собственные вектора
-x₁+3x₂=0
x₁=1 x₂=1/3
-3x₁+4x₂=0
x₁=1 x₂=3/4
ответ: 13/12
4) x₁²+4x₁x₂+4x₁x₃+29x₂²+38x₂x₃+17x₃²=(x₁+2x₂+2x₃)²+(5x₂+3x₃)²+4x₃²=a₁²+a₂²+4a³₂
ответ: 6
4) 9x₁²-12x₁x₂-18x₁x₃+8x₂x₃+8x₃²= (3x₁-2x₂-3x₃)²-(2x₂+x₃)²= y₁² - y₂²
ответ: 1+(-1)=0
5) Составим матрицу квадратичной формы
2 4 3
4 26 -3
3 -3 9
Для определения классификации вычислим главные миноры
Δ₁ = 2 > 0
Минор третьего порядка это определитель самой матрицы, он равен 0
Таким образом, квадратичная форма неотрицательно определена
7) 5x - 2y - 22=0
3x + 2y -10=0
Решаем систему находим x=4 ⇒ y=-1
ответ: 4-1=3
8) y = -8x+1
y = -6x-13
k₁=-8 k₂=-6
tgφ = (k₂-k₁)/(1+k₁k₂)=2/49
φ = arctg(2/49)≈0,04
9) c = 2
e = 5/6
c=ea ⇒ a=12/5 ⇒ a² = 144/25
c² = a² - b² ⇒ b² = 144/25 - 4 = 44/25
a²+b² = 188/25
ответ: 188/25
1) Матрица линейного оператора выглядит следующим образом
α₁₁ α₁₂
α₂₁ α₂₂
Составим соответствующие уравнения после действия этого оператора
5α₁₁+4α₁₂=11
5α₂₁+4α₂₂=25
4α₁₁-3α₁₂=-16
4α₂₁-3α₂₂=-11
Решая систему находим элемениы матрицы
α₁₁=-1 α₁₂=4
α₂₁= 1 α₂₂=5
ответ: 9
2) Составим матрицу оператора
1 7 8
-5 -1 8
-2 -4 1
Транспонируем ее
1 -5 -2
7 -1 -4
8 8 1
ответ: 17
3) Решим соответствующее характеристическое уравнение
Для всех собственных значений найдем собственные вектора
-x₁+3x₂=0
x₁=1 x₂=1/3
-3x₁+4x₂=0
x₁=1 x₂=3/4
ответ: 13/12
4) x₁²+4x₁x₂+4x₁x₃+29x₂²+38x₂x₃+17x₃²=(x₁+2x₂+2x₃)²+(5x₂+3x₃)²+4x₃²=a₁²+a₂²+4a³₂
ответ: 6
4) 9x₁²-12x₁x₂-18x₁x₃+8x₂x₃+8x₃²= (3x₁-2x₂-3x₃)²-(2x₂+x₃)²= y₁² - y₂²
ответ: 1+(-1)=0
5) Составим матрицу квадратичной формы
2 4 3
4 26 -3
3 -3 9
Для определения классификации вычислим главные миноры
Δ₁ = 2 > 0
Минор третьего порядка это определитель самой матрицы, он равен 0
Таким образом, квадратичная форма неотрицательно определена
7) 5x - 2y - 22=0
3x + 2y -10=0
Решаем систему находим x=4 ⇒ y=-1
ответ: 4-1=3
8) y = -8x+1
y = -6x-13
k₁=-8 k₂=-6
tgφ = (k₂-k₁)/(1+k₁k₂)=2/49
φ = arctg(2/49)≈0,04
9) c = 2
e = 5/6
c=ea ⇒ a=12/5 ⇒ a² = 144/25
c² = a² - b² ⇒ b² = 144/25 - 4 = 44/25
a²+b² = 188/25
ответ: 188/25