Пусть во второй бригаде х рабочих, тогда в первой 2х рабочих. В первой бригаде число рабочих уменьшилось на 5, значит их стало 2х-5. А во второй число рабочих уменьшилось на 2, значит их стало х-2. Так как в первой бригаде рабочих стало на 7 больше, чем во второй, то составим и решим уравнение: 2х-5-(х-2)=7 2х-5-х+2=7 х-3=7 х=7+3 х=10 значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих. ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих
2х-5-(х-2)=7
2х-5-х+2=7
х-3=7
х=7+3
х=10
значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих
а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих.
ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих
1) и 3)
Объяснение:
Для замены неравенства (x − 14) ⋅ (x + 12) ≤ 0
следует выбрать ту систему, которая обеспечивает отрицательный знак произведения, то есть
1) {x−14≥0
{x+12≤0
и
3) {x−14≤0
{x+12≥0
Дополнительно, решим неравенство
Рассматривая систему неравенств 1), видим, что она сводится к системе
{х ≥ 14
{х ≤ -12
Очевидно, что данная система решений не имеет
Рассматривая систему неравенств 3), видим, что она сводится к системе
{х ≤ 14
{х ≥ -12
Очевидно, что данная система имеет решение х ∈ [-12; 14]