В коробке находятся 3 шара синего цвета и 2 шара красного. Извлекаются два шара. Найдите вероятность того, что среди двух извлеченных шаров окажется: 1) один шар синего цвета; 2) два шара синего цвета; 3) хотя бы один шар синего цвета.
Можно решить через логарифмы Количество знаков в числе N равно [lg(N)] + 1. Не менее 9 - это больше 8. Не более 11 - это меньше 12 lg(m^3) = 3*lg(m) > 8 lg(m^4) = 4*lg(m) < 12 Сокращаем lg(m) > 8/3 lg(m) < 3 Получаем. lg(m^12) = 3*4*lg(m) = 3*4*8/3 = 32 ответ: 32 знака
Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй. (a+b)3=a3+3a2b+3ab2+b3 Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй. (a-b)3=a3-3a2b+3ab2-b3 Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов. ( a+b)(a2-ab+b2)=a3+b3 Произведение разности двух величин на неполный квадрат суммы равно разности их кубов. (a-b)(a2+ab+b2)=a3- b3 Вроде-бы так
m^3 >= 100000000 = 10^8
m^4 < 100000000000 = 10^11
Извлекаем корни
m >= 10^(8/3) > 464
m < 10^(11/4) < 563
464^12 ~ 9,9*10^31 - 32 знака
500^12 = 5^12*100^12 = 244140625*10^24 - 32 знака
563^12 ~ 1,01*10^33 - 33 знака
ответ: 32 знака.
Можно решить через логарифмы
Количество знаков в числе N равно [lg(N)] + 1.
Не менее 9 - это больше 8. Не более 11 - это меньше 12
lg(m^3) = 3*lg(m) > 8
lg(m^4) = 4*lg(m) < 12
Сокращаем
lg(m) > 8/3
lg(m) < 3
Получаем.
lg(m^12) = 3*4*lg(m) = 3*4*8/3 = 32
ответ: 32 знака