В корзине размещена карточки на которых написано число от 1 до 10. Из которых вынимают 4 карточки, и суммируют числа написанные на них. Найдите сколько различных наборов карточек можно вытащить из корзины , заранее благодарю!
Т.к. sin(x) - непрерывная функция, она интегрируема, и можно выбирать любое разбиение с любыми точками на нем. Разобьем [a,b] на n равных частей и возьмем значения функции в левых точках получившихся отрезков: ∑ sin(a + k*(b-a)/n) * (b-a)/n, где k = 0 .. n-1
Здесь были применены формулы cos(x+y) = cos(x)cos(y) - sin(x)sin(y) cos(x-y) = cos(x)cos(y) + sin(x)sin(y) Тогда sin(x)sin(y) = 1/2 (cos(x-y) - cos(x+y)) Где x = a + k*(b-a)/n, y = (b-a)/2n
y было выбрано так, чтобы все косинусы, кроме крайних, попадали в сумму с разными знаками и сокращались.
Исходная сумма ∑ sin(a + k*(b-a)/n) * (b-a)/n преобразуется к виду (b-a)/n * 1/(2sin( (b-a)/2n )) * ∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)], k = 0 .. n-1
Т.к. cos(a + (k + 1/2) * (b-a)/n) = cos(a + ((k+1)-1/2) * (b-a)/n), соответствующие слагаемые в сумме сокращаются, как и рассчитывалось. Т.е.
При n ⇒ ∞, это выражение стремится к cos(a) - cos(b)
Что касается коэффициента (b-a)/n * 1/(2sin( (b-a)/2n )) перед суммой, при n ⇒ ∞ синус стремится к своему аргументу, т.е. (b-a)/n * 1/(2sin( (b-a)/2n )) ⇒ (b-a)/n * 1/(2 * (b-a)/2n)) = 1
Т.е. сумма стремится cos(a) - cos(b) при n ⇒ ∞, причем этот предел по определению и является искомым определенным интегралом (диаметр разбиения (b-a)/n стремится к 0)
1) x+8=25 - возводим обе части в квадрат, чтобы избавиться от корня
x=25-8=17
2) 6x-8=x^2
-x^2+6x-8=0 | (-1)
x^2-6x+8=0
x(x-2)-4(x-2)=0
(x-2)(x-4)=0
х= 2 или x=4
3) 3x+7=49-14x+x^2
3x+7-49+14x-x^2=0
17x-42-x^2=0
x^2-17x+42=0
x*(x-3)-14*(x-3)=0
(x-3)(x-14)=0
Подставим: 3 +корень(3*3+7)=7
7=7
14+корень(3*14+7)=7
21=7 не подходит
ответ: х=3
4) 6x^2-3=5x-2
6x^2-5x-1=0
x(6x+1)-(6x+1)0=
(6x+1)(x-1)=0
x=-1/6 или x=1
Проверяем: подставишь в исходное уравнение и поймёшь, что -1/6 не подходит.
ответ: 1
5) 8-корень(x)=-3x-5
64x=9x^2+30x+25
34x-9x^2-25=0
9x^2-34x+25=0
9x(x-1)-25(x-1)=0
(x-1)(9x-25)=0
x=1 или x=25/9
Подставишь и поймёшь, что оба подходят.
ответ: 1, 25/9
6) Находим область допустимых значений:
x^2-7x<0
x ∈ (0;7)
Выражение верно для любого значения х, так как функция корня всегда положительна или равна 0.
ответ: (-∞;0]∪[7;+∞)
∑ sin(a + k*(b-a)/n) * (b-a)/n, где k = 0 .. n-1
Далее преобразуем слагаемые в разности косинусов:
sin(a + k*(b-a)/n) = sin(a + k*(b-a)/n) * sin( (b-a)/2n ) / sin( (b-a)/2n ) = 1/(2sin((b-a)/2n)) * [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)]
Здесь были применены формулы
cos(x+y) = cos(x)cos(y) - sin(x)sin(y)
cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
Тогда sin(x)sin(y) = 1/2 (cos(x-y) - cos(x+y))
Где x = a + k*(b-a)/n, y = (b-a)/2n
y было выбрано так, чтобы все косинусы, кроме крайних, попадали в сумму с разными знаками и сокращались.
Исходная сумма ∑ sin(a + k*(b-a)/n) * (b-a)/n преобразуется к виду
(b-a)/n * 1/(2sin( (b-a)/2n )) * ∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)], k = 0 .. n-1
Т.к. cos(a + (k + 1/2) * (b-a)/n) = cos(a + ((k+1)-1/2) * (b-a)/n), соответствующие слагаемые в сумме сокращаются, как и рассчитывалось. Т.е.
∑ [cos(a + (k-1/2)*(b-a)/n) - cos(a + (k+1/2)*(b-a)/n)] = cos(a - 1/2 (b-a)/n) - cos(a + (n - 1/2)*(b-a)/n)
При n ⇒ ∞, это выражение стремится к cos(a) - cos(b)
Что касается коэффициента (b-a)/n * 1/(2sin( (b-a)/2n )) перед суммой, при n ⇒ ∞ синус стремится к своему аргументу, т.е. (b-a)/n * 1/(2sin( (b-a)/2n )) ⇒ (b-a)/n * 1/(2 * (b-a)/2n)) = 1
Т.е. сумма стремится cos(a) - cos(b) при n ⇒ ∞, причем этот предел по определению и является искомым определенным интегралом (диаметр разбиения (b-a)/n стремится к 0)