В кроссе участвовали 18 учеников, в том числе Алексей, Николай, Вадим. Вычисли, сколькими различными Алексей и Николай могут финишировать друг за другом. ответ: ⋅ !
2. Вадим финишировал не первым и не последним. ответ: ⋅ !
Скорость I туриста - х км/ч Скорость II туриста - у км/ч
Первая часть задачи: Расстояние , пройденное I туристом - 2х км Расстояние , пройденное II туристом - 2у км Расстояние , пройденное двум туристами - (24-6)= 18 км Первое уравнение : 2х + 2у = 18
Вторая часть задачи: Расстояние, пройденное I туристом - (2+2) х = 4х км Расстояние, пройденное II туристом - (2+2)у = 4у км Разница в расстоянии - 4 км Второе уравнение: 4х - 4у = 4
ответ:
x∈(-∞; -6)∪(6; 10]
объяснение:
(x^2-16x+60)/(x^2-36)≤0
y=(x^2-16x+60)/(x^2-36)
(x^2-16x+60)/(x^2-36)=0
1) x^2-16x+60=0
d=256-4*60=256-240=16
2) x^2-36≠0
x^2≠36
x≠6
x≠-6
- + - +
---()()*>
(-6) (6) 10
x∈(-∞; -6)∪(6; 10]
Скорость II туриста - у км/ч
Первая часть задачи:
Расстояние , пройденное I туристом - 2х км
Расстояние , пройденное II туристом - 2у км
Расстояние , пройденное двум туристами - (24-6)= 18 км
Первое уравнение :
2х + 2у = 18
Вторая часть задачи:
Расстояние, пройденное I туристом - (2+2) х = 4х км
Расстояние, пройденное II туристом - (2+2)у = 4у км
Разница в расстоянии - 4 км
Второе уравнение:
4х - 4у = 4
Система уравнений:
{2x+2y=18 | :2
{4x - 4y= 4 | :4
{x+y = 9 ⇒ у=9-х
{x-y=1
метод сложения
х+у +х-у=9+1
2х=10
х=10/2
х=5 (км/ч) скорость I пешехода
у=9-5= 4 (км/ч) скорость II пешехода
ответ: 5 км/ч скорость первого пешехода, 4 км/ч скорость второго пешехода.