В люстре пять новых лампочек. Событие A состоит в том, что в течение
года перегорит ровно две лампочки. Опишите событие Ā
Укажите правильный вариант ответа:
Будут гореть ровно 3 лампочки
Будут гореть ровно 2 лампочки
Будут гореть ровно 4 лампочки
Будут гореть ровно 2 лампочки
Всего чисел содержащих 5ку от 1 до 104 - 20чисел.
Одной 5ки конечно мало, произведение также должно делиться и на восемь.
Среди тех 20ти чисел 3 из них делится на 4(для них возьмем соседние числа делящиеся на 2), 2 на 8, 5 на 2(для них возьмем соседние числа делящиеся на 4)...Оставшиеся 10 нечетны, для них возьмем соседние числа делящиеся на 8. Нетрудно показать что чисел этих хватит.
Получается наибольшее количество чисел 40.
Для решения нужно подставить значение - n - в формулу общего члена последовательности
2.
ДАНО
Xn = 6*n - 1
РЕШЕНИЕ
2.
а) Х1 = 6 -1 = 5 - ОТВЕТ
б) Х4 = 6*4-1 = 23 - ОТВЕТ
в) X20 = 6*20 - 1 = 119 - ОТВЕТ
г) Х100 = 600 - 1 = 599 - ОТВЕТ
д) X(R) = 6*R - 1 - ОТВЕТ
е) X(R+2) = 6*R + 6*2 - 1 = 6*R + 11 - ОТВЕТ
3. Найти 3, 6 и 20-й член последовательности.
a) a3 = 3-2 = 1, a6 = 6-2 = 4, a20 = 20 - 2 = 18 - ОТВЕТ
b) a3 = 9 - 1/2 = 8 1/2 = 8.5, a6 = 17.5, a20 = 59.5 - ОТВЕТ
c) a3 = 3²=9, a6= 6²=36, a20 = 20²=400 - ОТВЕТ
d) a3 = 3*4 = 12, a6 = 6*7=42, a20 = 20*21 = 420 - ОТВЕТ
e) a3 = 3²+6 = 15, a6 = 36+6=42, a20 = 400+6 = 406 - ОТВЕТ
g) a3 = a6 = a20 = - 1 - ОТВЕТ
Возможно формула должна быть - an = (-1)ⁿ
g) a3 = (-1)³ = - 1(нечетная степень) , a6 = а20 = 1 (четная) - ОТВЕТ