. В область определения функции, заданной формулой y = 2+x:x-4не Входит Число 1) -2 2) 0 3) 4 4) 4 -2 .3. Задайте формулой зависимость скорости движения и км/ч от времени t ч, которое находится в пути автомобиль, если он про- езжает 640 км. Найдите по формуле а) и, если t 16 б) t, если у = 80
Постройте график функции у=х2-2х-8. Найдите с графика:
а) значение у при х=-1,5;
б) значение х, при которых у=3;
в) нули функции; промежутки, в которых у>0 и в которых у<0;
г) промежуток, в котором функция возрастает.
Для построения вычислим коорд. вершины: х0=-(-2)/2=1, у0=у(1)=1-2-8=-9
Нули ф-ции: у=0 х2-2х-8=0 х1=-2, х2=4
а) х=1,5 у≈ -8,75
б) х ≈ 4.5
в) Нули: х=-2; х=4
y>0 при х<-2 и х>4
y<0 при x€ (-2;4)
г) у возрастает при х>1 (1; +∞)
liliana
Администратор ( +3063 )
22.11.2014 21:50
Комментировать
№ 1. Построить график функции у=х2-2х-3, где х€(-∞;+ ∞) и определить область значения этой функции при указанных х.
График - парабола, ветви направлены вверх. Строится по схеме.
1) Находим нули функции, решая уравнение х2 -2х -3 = 0;
х1=-1; х2=3.
2) Координаты вершины параболы: х0=-b/(2a) = 2/2=1;
y0 = y(1) = 1-2-3 = -4
3) Найдем координаты точки пересечения графика с осью ОY:
x=0; y=-3.
4) Строим график по найденным точкам. Ось симметрии - прямая х=1
Можно вычислить значение функции в дополнительной точке, например, х=-2.
Получим у(-2) = 4+4-3= 5.
Область определения D(y)=R
Область значений Е(у)=[4; +∞).
Объяснение:
если a < 0, нет точек пересечения,
если а = 0, бесконечно много точек пересечения,
если а > 0. одна точка пересечения.
Объяснение:
Графический метод.
1) Построим график функции у = |x| (красный график)
Так как |x| = x при x ≥ 0, то для x ≥ 0 графиком является луч с началом в точке (0; 0), биссектриса первой координатной четверти.
Так как |x| = - x при x < 0, то для x < 0 графиком является часть прямой у = - х, расположенная во второй координатной четверти.
2) Построим график функции у = х + а (зеленый график) для различных значений а.
Графиком этой функции является прямая, проходящая под углом 45° к положительному направлению оси Ох, и пересекающая ось Оу в точке (0; а).
Если а < 0, то прямая проходит ниже графика функции у = |x| и не пересекает его.Если а = 0, то прямая проходит через начало координат и совпадает с частью графика функции y = |x|, тогда бесконечно много общих точек.Если а > 0, то прямая пересекает график функции y = |x| в одной точке.Аналитический метод:
1) a < 0
|x| = x + a
Если х ≥ 0, то x = x + a
a = 0
но а < 0, значит точек пересечения нет.
Если х < 0, то - x = x + a
- 2x = a
здесь левая часть положительна, правая - отрицательна, значит нет точек пересечения.
2) а = 0
|x| = x
равенство верно, для любых x ≥ 0.
Бесконечно много общих точек.
3) а > 0
Если x ≥ 0, то x = x + a
a = 0
но а > 0, значит точек пересечения нет.
Если x < 0, то - x = x + a
- 2x = a
обе части положительны, значит для каждого а > 0 найдется значение х, при котором равенство будет верно, следовательно одна точка пересечения.