— Чтобы узнать, возрастает или убывает функция y=6-3x, нужно использовать вот такие правила:
• 1. Смотрим на то, что стоит перед функцией ( знак «+» или «-» ) .
• 2. Мы увидели, какой знак стоит перед функцией. Это знак «-». Теперь, переходим к следующему пункту нашего правила.
• 3. Теперь, чтобы нам легче узнать, возрастающая или убывающая эта функция, возьмём пример с возрастающей функцией и убывающей. Например: y=6x-2. В данном случае функция возрастающая, т.к. перед «x» подразумевается знак «+». А вот возьмём ещё один пример, только с убывающей функцией: -x+1. Перед «х» стоит знак «-», значит, функция убывающая
• 4. Ну, а теперь, по примеру, будем определять: возрастает или убывает функция y=6-3x .
• 5. y=6-3x. Мы видим, то что перед «х» стоит знак «-», значит, функция убывающая.
• ответ:
Функция y=6-3x убывает.
— Фу-у-ух, как же я это долго писала! Надеюсь, я Вам и остальным участникам! Удачи! :³
• Решение:
— Чтобы узнать, возрастает или убывает функция y=6-3x, нужно использовать вот такие правила:
• 1. Смотрим на то, что стоит перед функцией ( знак «+» или «-» ) .
• 2. Мы увидели, какой знак стоит перед функцией. Это знак «-». Теперь, переходим к следующему пункту нашего правила.
• 3. Теперь, чтобы нам легче узнать, возрастающая или убывающая эта функция, возьмём пример с возрастающей функцией и убывающей. Например: y=6x-2. В данном случае функция возрастающая, т.к. перед «x» подразумевается знак «+». А вот возьмём ещё один пример, только с убывающей функцией: -x+1. Перед «х» стоит знак «-», значит, функция убывающая
• 4. Ну, а теперь, по примеру, будем определять: возрастает или убывает функция y=6-3x .
• 5. y=6-3x. Мы видим, то что перед «х» стоит знак «-», значит, функция убывающая.
• ответ:
Функция y=6-3x убывает.
— Фу-у-ух, как же я это долго писала! Надеюсь, я Вам и остальным участникам! Удачи! :³
1) (sin(2t))/(1+cos(2t)) *((сost)/(1+cos(t)) =
(((2sint)*(cost))/(2cos²t))*(cost/(2cos²(t/2)))=(tgt)*cost/(2cos²(t/2))=
(sint)/(2cos²(t/2))=(2sin(t/2))*cos(t/2)/(2cos²(t/2))=tg(t/2)
Bоспользовался дважды формулой (1+cosα)=2cos²α ; формулой синуса двойного аргумента sin2α=2(sinα)*(cosα) и tgα=sinα/cosα.
2) Докажем второе тождество, используя те же формулы.
((sin(2t))/(1+cos(2t)))*(cost/(1+cost))*(cos(t/2))/(1+cos(t/2))=tg(t/4)
1) упростим ((sin(2t))/(1+cos(2t)))=(2sint)(сost)/(2cos²t)=sint/(cost)=tgt
2) умножим (tgt)*(cost/(1+cost))=(sint)/(2cos²(t/2))=
(2sin(t/2))*(cos(t/2))/(2cos²(t/2))=tg(t/2)
3) умножим (tg(t/2))*((cos(t/2))/(1+cos(t/2))=sin(t/2)/(2cos²(t/4)=
(2sin(t/4)*(cos(t/4))/(2cos²(t/4))=tg(t/4)
Требуемое доказано.