Находим наибольшее значение выражения 2x²-4xy+y², если х-у=3
1) Выражаем переменную у через х: x-y=3 y=x-3
2) Подставляем найденное значение переменной у в выражение 2x²-4xy+y²: 2x²-4xy+y²=2x²-4x(x-3)+(x-3)²=2x²-4x²+12x+x²-6x+9=-x²+6x+9 Получили функцию у=-x²+6x+9
3) y(x)=-x²+6x+9 - парабола, оси вниз, т.к. а=-1<0, поэтому наибольшим значением данной функции будет ордината вершины параболы. Находим вершину: х(вер.)=-6/(2*(-1))=-6/(-2)=3 - абсцисса вершины у(вер.)=-3²+6*3+9=-9+18+9=18 - ордината вершины у(наиб.)=18
Существует несколько вычисления квадратного корня числа вручную. Разложите подкоренное число на множители, которые являются квадратными числами. В зависимости от подкоренного числа, вы получите приблизительный или точный ответ. Квадратные числа – числа, из которых можно извлечь целый квадратный корень. Множители – числа, которые при перемножении дают исходное число. Например, множителями числа 8 являются 2 и 4, так как 2 х 4 = 8, числа 25, 36, 49 являются квадратными числами, так как √25 = 5, √36 = 6, √49 = 7. Квадратные множители – это множители, которые являются квадратными числами. Сначала попытайтесь разложить подкоренное число на квадратные множители. Квадратные корень из произведения некоторых членов равен произведению квадратных корней из каждого члена, то есть √(а х b) = √a x √b. Воспользуйтесь этим правилом и извлеките квадратный корень из каждого квадратного множителя и перемножьте полученные результаты, чтобы найти ответ.
1) Выражаем переменную у через х:
x-y=3
y=x-3
2) Подставляем найденное значение переменной у в выражение 2x²-4xy+y²:
2x²-4xy+y²=2x²-4x(x-3)+(x-3)²=2x²-4x²+12x+x²-6x+9=-x²+6x+9
Получили функцию у=-x²+6x+9
3) y(x)=-x²+6x+9 - парабола, оси вниз, т.к. а=-1<0, поэтому наибольшим значением данной функции будет ордината вершины параболы.
Находим вершину:
х(вер.)=-6/(2*(-1))=-6/(-2)=3 - абсцисса вершины
у(вер.)=-3²+6*3+9=-9+18+9=18 - ордината вершины
у(наиб.)=18
ответ: 18