В одной системе координат постройте графики функций y=IxI и y=0,5x + 3. Найдите координаты их общих точек. ответ запишите в следующем виде: (x1;y1) и (х2;y2)
(2x^2-3x+1)(2x^2+5x+1)=9x^2посмотрим что (могу и ошибиться,ибо все делаю не так как надо)1.)приравниваем к нулю: (2x^2-3x+1)(2x^2+5x+1)-9x^2=0 2.) раскрываем скобки: 4x^4 +10x^3+2x^2 -6x^3-15x^2-3x+2x^2+5x+1-9x^2=0 4x^4+4x^3-20x^2+2x=-1 3)выносим за скобки 2x: 2x(2x^3+2x^2-10x+1)=-1 2x=-1, x1=-0,5дальше,продолжаем2x^3+2x^2-10x+1=-1,отсюда 2x^3+2x^2-10x=-2,отсюда 2x за скобки снова: 2x(x^2+x-5)=-2, 2x=-2, x2=-1 x^2+x-5=-1,отсюда x^2+x=4, отсюда x за скобки: x(x+1)=4, x3=4, x4=3x1+x2+x3+x4=-0,5+(-1)+4+3=-1,5+7=5,5
Объяснение:
1) |4-x|<6
__x<4__x=4__x>4__
+ 0 - 4-x
x<4
4-x<6⇒-x<6-4⇒-x<2⇒x>-2 x∈(-2;4]
x>4
-(4-x)<6⇒-4+x<6⇒x<6+4⇒x<10 x∈(4;10)
x∈(-2;10) целых решений : -1,0,1,2,3,4,5,6,7,8,9=11
2) 2|x+3|≤|x-1|⇒2|x+3|-|x-1|≤0
x<-3x=-3-3≤x<1x=1x≥1
- 0 + + x+3
- - 0 + x-1
x<-3
2(-x-3)-(-x+1)≤0⇒-2x-6+x-1≤0⇒-x-7≤0⇒-x≤7⇒x≥-7 x∈[-7;-3)
-3≤x<1
2(x+3)-(-x+1)≤0⇒2x+6+x-1≤0⇒3x≤-5⇒x≤-5/3 x∈[-3;-5/3]
x≥1
2x+6-(x-1)≤0⇒2x+6-x+1≤0⇒x≤-7 x∈∅
x∈[-7;-3)U[-3;-5/3] целых решений: -7,-6,-5,-4,-3,-2=6