Пусть масса первого раствора равна х г, а масса второго раствора равна у г. По условию, х+у=800 (г) -это первое уравнение системы. 35% от 800 г равны 800*35%:100%=280 г Масса 20% первого раствора равны 0,2х г, а 40% второго раствора равны 0,4у г. Получаем, 0,2х+0,4у=280 (г) - это второе уравнение системы Решим систему уравнений: {x+y=800 {0,2x+0,4y=280
{x=800-y {0,2(800-y)+0,4y=280 160-0,2y+0,4y=280 0,2y=120 y=120:0,2 y=600 (г)-масса второго раствора х=800-600=200(г)-масса первого раствора
ответ: Необходимо взять 200 г первого и 600 г второго раствора
Пишу ход своих мыслей: Если скорость одного велосипедиста больше на 3 км/ч., но известно, что один велосипедист преодолевает этот путь на один час быстрее, тогда: 1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже. 2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее. 3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее 4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
а масса второго раствора равна у г.
По условию, х+у=800 (г) -это первое уравнение системы.
35% от 800 г равны 800*35%:100%=280 г
Масса 20% первого раствора равны 0,2х г,
а 40% второго раствора равны 0,4у г.
Получаем, 0,2х+0,4у=280 (г) - это второе уравнение системы
Решим систему уравнений:
{x+y=800
{0,2x+0,4y=280
{x=800-y
{0,2(800-y)+0,4y=280
160-0,2y+0,4y=280
0,2y=120
y=120:0,2
y=600 (г)-масса второго раствора
х=800-600=200(г)-масса первого раствора
ответ: Необходимо взять 200 г первого и 600 г второго раствора
1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже.
2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее.
3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее
4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже
ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.