В прямоугольном треугольнике первый катет меньше второго на 12 см, а площадь прямоугольного треугольника меньше 14 см2. Найдите больший из катетов, если он выражен целым числом.
Y = ln(x+5)^5 - 5x Берем первую производную: y' = 1/(x+5)^5 * 5(x+5)^4 - 5 = 5/(x+5) - 5 Так как нас интересует экстремум, то ищем такие иксы, в которых производная равна нулю: y'=0 => 5/(x+5) - 5 =0 Решив это уравнение, получаем: x=-4 Осталось проверить является ли эта точка максимумом. Если это так, то значения производной в точках, лежащих слева от x=-4 положительны, а справа - отрицательны Пусть это будут точки x=-4.5 и x=0 f'(-4.5) = 5/(-4.5+5) - 5 = 10 - 5 = 5>0; f'(0) = 5/(0+5) - 5 = 1 - 5 = -4 <0 => x=-4 - точка максимума
Хорошо, давайте разберемся, как найти наибольшее значение функции f(x) = 3 - 2sin^2(x).
Шаг 1: Определение диапазона значений переменной x
Функция синуса (sin(x)) может принимать значения от -1 до 1. Однако, чтобы получить значение sin^2(x), нужно возвести синус в квадрат, что делает его положительным, то есть значение sin^2(x) будет варьироваться от 0 до 1.
Шаг 2: Понимание максимального значения sin^2(x)
Наибольшее значение sin^2(x) будет достигаться, когда sin(x) равно 1 или -1. Поскольку мы рассматриваем обычный синус (sin(x)), то значение sin(x) равное 1 будет достигаться при x = π/2, а значение sin(x) равное -1 будет достигаться при x = (3π/2) или (5π/2) и так далее.
Шаг 3: Подстановка максимальных значений sin^2(x) в функцию f(x)
Подставим значения, которые дадут максимальное значение sin^2(x), в функцию f(x) = 3 - 2sin^2(x):
- При x = π/2, sin(π/2) = 1, и sin^2(π/2) = 1. Подставляем в функцию: f(π/2) = 3 - 2(1) = 1.
- При x = (3π/2) или (5π/2), sin((3π/2)) = -1, и sin^2((3π/2)) = 1. Подставляем в функцию: f((3π/2)) = 3 - 2(1) = 1.
Шаг 4: Сравнение значений f(x)
Мы видим, что для всех значений, которые дают нам максимальное значение sin^2(x), значение функции f(x) равно 1.
Таким образом, наибольшее значение функции f(x) = 3 - 2sin^2(x) равно 1.
Берем первую производную:
y' = 1/(x+5)^5 * 5(x+5)^4 - 5 = 5/(x+5) - 5
Так как нас интересует экстремум, то ищем такие иксы, в которых производная равна нулю: y'=0 => 5/(x+5) - 5 =0
Решив это уравнение, получаем: x=-4
Осталось проверить является ли эта точка максимумом. Если это так, то значения производной в точках, лежащих слева от x=-4 положительны, а справа - отрицательны
Пусть это будут точки x=-4.5 и x=0
f'(-4.5) = 5/(-4.5+5) - 5 = 10 - 5 = 5>0; f'(0) = 5/(0+5) - 5 = 1 - 5 = -4 <0
=> x=-4 - точка максимума
Шаг 1: Определение диапазона значений переменной x
Функция синуса (sin(x)) может принимать значения от -1 до 1. Однако, чтобы получить значение sin^2(x), нужно возвести синус в квадрат, что делает его положительным, то есть значение sin^2(x) будет варьироваться от 0 до 1.
Шаг 2: Понимание максимального значения sin^2(x)
Наибольшее значение sin^2(x) будет достигаться, когда sin(x) равно 1 или -1. Поскольку мы рассматриваем обычный синус (sin(x)), то значение sin(x) равное 1 будет достигаться при x = π/2, а значение sin(x) равное -1 будет достигаться при x = (3π/2) или (5π/2) и так далее.
Шаг 3: Подстановка максимальных значений sin^2(x) в функцию f(x)
Подставим значения, которые дадут максимальное значение sin^2(x), в функцию f(x) = 3 - 2sin^2(x):
- При x = π/2, sin(π/2) = 1, и sin^2(π/2) = 1. Подставляем в функцию: f(π/2) = 3 - 2(1) = 1.
- При x = (3π/2) или (5π/2), sin((3π/2)) = -1, и sin^2((3π/2)) = 1. Подставляем в функцию: f((3π/2)) = 3 - 2(1) = 1.
Шаг 4: Сравнение значений f(x)
Мы видим, что для всех значений, которые дают нам максимальное значение sin^2(x), значение функции f(x) равно 1.
Таким образом, наибольшее значение функции f(x) = 3 - 2sin^2(x) равно 1.