В прямоугольной системе координат построен треугольник АОВ. Даны координаты точек О(0 ; 0 ;0 ), А(-3; -4; 6) , В( 7; 1 ;-9) . Найти длину отрезка ОС , если точка С принадлежит отрезку АВ и известно, что АС : СВ = 4:1
Найдём касательные к графику функции y=-0,5x²+3. График указанной функции представляет собой параболу ветви которой направлены вниз, вершина находится в точке с координатами (0;3), ось симметрии совпадает с осью ординат. Касательные (из условия) перпендикулярны друг другу и равны, следовательно угол наклона к оси абсцисс одной из них будет 45°, а другой 135°. Угловой коэффициент k прямой равен тангенсу угла наклона, значит у одной касательной он будет k₁=tg45°=1 а у другой k₂=tg135°=-1 Тогда уравнения касательных примут вид y₁=x+b y₂=-x+b Найдём значение b, для этого приравняем функции y=-0,5x²+3 и y=x+b: -0,5x²+3=x+b -0,5x²+3-x-b=0 -0,5x²-x+(3-b)=0 Уравнение должно иметь один корень, значит дискриминант должен быть равен 0 D=(-1)²-4*(-0,5)*(3-b)=1+2(3-b)=1+6-2b=7-2b=0 -2b=-7 b=3,5 Уравнения касательных будут иметь вид: y=x+3,5 y=-x+3,5 Находим пределы интегрирования. Сначала нижний: -0,5x²+3=x+3,5 -0,5x²-x-0,5=0 D=0 x=1/(-0,5*2)=-1 Теперь верхний: -0,5x²+3=-x+3,5 -0,5x²+x-0,5 D=0 x=-1/(-0,5*2)=1 Найдём площадь фигуры сначала слева от оси ординат, потом справа и сложим их:
k₁=tg45°=1
а у другой
k₂=tg135°=-1
Тогда уравнения касательных примут вид
y₁=x+b
y₂=-x+b
Найдём значение b, для этого приравняем функции y=-0,5x²+3 и y=x+b:
-0,5x²+3=x+b
-0,5x²+3-x-b=0
-0,5x²-x+(3-b)=0
Уравнение должно иметь один корень, значит дискриминант должен быть равен 0
D=(-1)²-4*(-0,5)*(3-b)=1+2(3-b)=1+6-2b=7-2b=0
-2b=-7
b=3,5
Уравнения касательных будут иметь вид:
y=x+3,5
y=-x+3,5
Находим пределы интегрирования. Сначала нижний:
-0,5x²+3=x+3,5
-0,5x²-x-0,5=0
D=0
x=1/(-0,5*2)=-1
Теперь верхний:
-0,5x²+3=-x+3,5
-0,5x²+x-0,5
D=0
x=-1/(-0,5*2)=1
Найдём площадь фигуры сначала слева от оси ординат, потом справа и сложим их:
ед².
a)f`(x)=√(x²-1)+2x(x-1)/2√(x²-1)=(x²-1+x²-x)/√(x²-1)=(2x²-x-1)/√(x²-1)
f`(2)=(8-2-1)/(√(4-1)=5/√3
b)y`=-1/√(1-(2x-1)³/3)*2/√3=-2√3/√3*√(2-4x²+4x)=-2/√(2-4x²+4x)
2
y=x³-6x²+9
D(y)=R
y(-x)=-x³-6x²+9 ни четная,ни нечетная
(0:9)-точка пересечения с осью оу
y`=3x²-12x=3x(x-4)=0
x=0 x=4
+ _ +
(0)(4)
возр x∈(-∞;0) U (4;∞)
убыв x∈(0;4)
ymax=y(0)=9
ymin=y(4)=-31
доп.точки
y(-1)=2
y(1)=4
y(5)=-16
график во вложении
3
1)Sx²dx/√(x³-5)=1/3Sdt/√t=2t/3=2√(x³-5)/3+C
t=x³-5⇒dt=3x²dx
2)S(4-3x)*e^3xdx=S(4e^3x-3x*e^3x)dx=-3Se^3x*xdx+4Se^3xdx=
=-e^3x*x+e^3x/3+4e^3x/3=-e^3x*x+5e^3x/3=e^3x(5/3-x)+C
В 4 в условии ошибка