В рамках мероприятий по охране природы ведется учет числа косулей одной из популяций. С начала учета число косулей (К) изменяется по формуле К-- 72+ 10 z+ 56 , где п выражено в годах. a) Через сколько лет число косулей было максимальным и каким было это число? б) Через сколько лет после начала учета популяция косулей может исчезнуть?
Для решения задачи через квадратное уравнение, необходимо обозначит скорость течения реки как х км/ч.
В таком случае, скорость теплохода по течению будет равна: (18 + х) км/ч.
Скорость теплохода против течения реки составит: (18 - х) км/ч.
Получим уравнение суммы времени.
(50 / (18 + х)) + (8 / (18 - х)) = 3
900 - 50 * х + 144 + 8 * х = -3 * х^2 + 972.
3 * х^2 - 42 * х + 72 = 0.
х^2 - 14 * х + 24 = 0.
Д^2 = (-14)^2 - 4 * 1 * 24 = 196 + 96 = 100.
Д = 10.
х = (14 - 10) / 2 = 4 / 2 = 2 км/ч.
Скорость течения реки 2 км/ч.
у= (-1/3)·x+7
Объяснение:
1) По условию график искомой линейной функции параллелен к функции у= (-1/3)·x+8 и поэтому угловой коэффициент равен к (-1/3). Тогда формула искомой линейной функции имеет вид
у= (-1/3)·x+b, b - пока неизвестно.
2) График искомой линейной функции проходит через точку А(6;5). Если график функции проходит через некоторую точку, то координаты этой точки должны удовлетворить уравнение функции. Поэтому подставляем координаты точки А в уравнение функции и находим b:
5 = (-1/3)·6 + b
5 = - 2 + b
b = 7.
Уравнение искомой функции: у= (-1/3)·x+7.