Дано уравнение cosx=1/(1- tgx).
сosx*(1 - tgx) = 1.
сosx - сosx*tgx = 1.
Заменим tgx = sinx/cosx,
сosx - сosx*( sinx/cosx) = 1.
cosx – sinx = 1.
Заменим sinx = √(1 – cos²x)
cosx - √(1 – cos²x) = 1.
Перенесём корень вправо, а 1 влево и возведём обе части в квадрат.
cos²x – 2cosx + 1 = 1 – cos²x,
2 cos²x – 2cosx = 0,
2cosx(cosx - 1) = 0.
Имеем 2 решения: cosx = 0 и cosx = 1.
Находим значения х:
x = arc cos 0 отбрасываем, так как при этом функция тангенса не имеет определения.
x = arc cos(1) = 2πn, n ∈ Z.
ответ: в заданном промежутке имеется 3 корня уравнения
-2π, 0, 2π.
.
а)
8x^2-4x-x^2+9
7x^2-4x+9
b)(р+3)(р-11)+(р+6)²
p^2 -8p-33+ p^2+12p+36 = 2p^2+4p+3
в)7(а+b)²-14 ab
7a^2+14ab+7b^2-14ab=7a^2+7b^2
2. Разложите на множители:
а) γ³-49γ ; б) -3а²-6ab-3b²
a)y(y^2-49)=y(y-7)(y+7)
б) -3а²-6ab-3b² =-(3a^2+6ab +3b^2)=-3(a+b)^2
3. Упростите выражение:
(а-1)²(а+1)+(а+1)(а-1) и найдите его значение при а= -3
16*-2+8=-32+8 =-24
а) (γ-6)²-(3γ)² = (y-6-3y)(y-6+3y)
б) с²-d²-c-d =(c-d)(c+d) - (c+d)=(c+d)(c-d-1)
(х-γ)² + (х+γ)²=2(х²+γ²)
x^2-2xy+y^2+x^2+2xy+y^2=2(x^2+y^ 2)
2x^2+2y^2=2 (x^2+y^2)
Дано уравнение cosx=1/(1- tgx).
сosx*(1 - tgx) = 1.
сosx - сosx*tgx = 1.
Заменим tgx = sinx/cosx,
сosx - сosx*( sinx/cosx) = 1.
cosx – sinx = 1.
Заменим sinx = √(1 – cos²x)
cosx - √(1 – cos²x) = 1.
Перенесём корень вправо, а 1 влево и возведём обе части в квадрат.
cos²x – 2cosx + 1 = 1 – cos²x,
2 cos²x – 2cosx = 0,
2cosx(cosx - 1) = 0.
Имеем 2 решения: cosx = 0 и cosx = 1.
Находим значения х:
x = arc cos 0 отбрасываем, так как при этом функция тангенса не имеет определения.
x = arc cos(1) = 2πn, n ∈ Z.
ответ: в заданном промежутке имеется 3 корня уравнения
-2π, 0, 2π.
.
а)
8x^2-4x-x^2+9
7x^2-4x+9
b)(р+3)(р-11)+(р+6)²
p^2 -8p-33+ p^2+12p+36 = 2p^2+4p+3
в)7(а+b)²-14 ab
7a^2+14ab+7b^2-14ab=7a^2+7b^2
2. Разложите на множители:
а) γ³-49γ ; б) -3а²-6ab-3b²
a)y(y^2-49)=y(y-7)(y+7)
б) -3а²-6ab-3b² =-(3a^2+6ab +3b^2)=-3(a+b)^2
3. Упростите выражение:
(а-1)²(а+1)+(а+1)(а-1) и найдите его значение при а= -3
16*-2+8=-32+8 =-24
а) (γ-6)²-(3γ)² = (y-6-3y)(y-6+3y)
б) с²-d²-c-d =(c-d)(c+d) - (c+d)=(c+d)(c-d-1)
(х-γ)² + (х+γ)²=2(х²+γ²)
x^2-2xy+y^2+x^2+2xy+y^2=2(x^2+y^ 2)
2x^2+2y^2=2 (x^2+y^2)