В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
liza1449
liza1449
11.03.2023 09:26 •  Алгебра

ІВ Розв'яжіть рівняння:
a) 4x2+lyl=x2;
б) |х-2|-у4=|3x-6|;
в) 10x-lyl= x2 + 25;
г)|y +4|+ |3x + 2|= 0.

Показать ответ
Ответ:
sergiykorolkov8
sergiykorolkov8
02.06.2023 12:50

а) Для решения уравнения 4x^2 + |y| = x^2, мы можем рассмотреть два случая, в зависимости от знака y.

1. Если y ≥ 0, тогда |y| = y, и уравнение принимает вид:

4x^2 + y = x^2

Перенесем все переменные на одну сторону уравнения:

3x^2 + y = 0

2. Если y < 0, тогда |y| = -y, и уравнение принимает вид:

4x^2 - y = x^2

Перенесем все переменные на одну сторону уравнения:

3x^2 - y = 0

Таким образом, уравнение имеет два варианта решений:

1) 3x^2 + y = 0 при y ≥ 0

2) 3x^2 - y = 0 при y < 0

б) Для решения уравнения |x - 2| - y/4 = |3x - 6|, мы также рассмотрим несколько случаев.

1. Если (x - 2) ≥ 0 и (3x - 6) ≥ 0, то уравнение принимает вид:

(x - 2) - y/4 = 3x - 6

Перенесем все переменные на одну сторону уравнения:

x - 3x = 2 - 6 + y/4

-2x = -4 + y/4

-8x = -16 + y

y = -8x + 16

2. Если (x - 2) ≥ 0 и (3x - 6) < 0, то уравнение принимает вид:

(x - 2) - y/4 = -(3x - 6)

Перенесем все переменные на одну сторону уравнения:

x - 3x = 2 + y/4 - 6

-2x = -4 + y/4

-8x = -16 + y

y = -8x + 16

3. Если (x - 2) < 0 и (3x - 6) ≥ 0, то уравнение принимает вид:

-(x - 2) - y/4 = 3x - 6

Перенесем все переменные на одну сторону уравнения:

- x + 2 - y/4 = 3x - 6

-4x + 8 - y = 12x - 24

-16x = -y + 16

y = 16x + 16

4. Если (x - 2) < 0 и (3x - 6) < 0, то уравнение принимает вид:

-(x - 2) - y/4 = -(3x - 6)

Перенесем все переменные на одну сторону уравнения:

- x + 2 - y/4 = -3x + 6

-4x + 8 - y = -12x + 24

8x = y + 16

y = 8x - 16

Таким образом, уравнение имеет несколько вариантов решений в зависимости от знаков и значения переменных x и y.

в) Для решения уравнения 10x - |y| = x^2 + 25, мы рассмотрим два случая, в зависимости от знака y.

1. Если y ≥ 0, то уравнение принимает вид:

10x - y = x^2 + 25

Перенесем все переменные на одну сторону уравнения:

x^2 - 10x + y - 25 = 0

2. Если y < 0, то уравнение принимает вид:

10x + y = x^2 + 25

Перенесем все переменные на одну сторону уравнения:

x^2 - 10x - y + 25 = 0

Таким образом, уравнение имеет два варианта решений:

1) x^2 - 10x + y - 25 = 0 при y ≥ 0

2) x^2 - 10x - y + 25 = 0 при y < 0

г) Для решения уравнения |y + 4| + |3x + 2| = 0, мы рассмотрим несколько случаев.

1. Если (y + 4) ≥ 0 и (3x + 2) ≥ 0, то уравнение принимает вид:

(y + 4) + (3x + 2) = 0

Перенесем все переменные на одну сторону уравнения:

y + 3x = -6

2. Если (y + 4) ≥ 0 и (3x + 2) < 0, то уравнение принимает вид:

(y + 4) - (3x + 2) = 0

Перенесем все переменные на одну сторону уравнения:

y - 3x = -2

3. Если (y + 4) < 0 и (3x + 2) ≥ 0, то уравнение принимает вид:

-(y + 4) + (3x + 2) = 0

Перенесем все переменные на одну сторону уравнения:

- y + 3x = -6

4. Если (y + 4) < 0 и (3x + 2) < 0, то уравнение принимает вид:

-(y + 4) - (3x + 2) = 0

Перенесем все переменные на одну сторону уравнения:

- y - 3x = -6

Таким образом, уравнение имеет несколько вариантов решений в зависимости от знаков и значения переменных x и y.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота