В шахматном турнире участвовали 30 шахматистов. Каждый сыграл с каждым ровно 1 раз. За победу давалась одно очко, за ничью 1/2, за поражение 0 какого наибольшего числа шахматистов по окончанию турнира у могло оказаться ровно 6 очков
Докажите, что середины сторон квадрата являются вершинами другого квадрата.
1). Рассмотрим треугольники в углах исходного квадрата, - KBM; MCN; NDL; LAK. Все они являются равнобедренными прямоугольными треугольниками с равными катетами.
Следовательно, их гипотенузы также равны: KM = MN = NL = LK.
Кроме того, так как углы при гипотенузах равны 45°, то:
∠KMN = ∠MNL = ∠NLK = ∠LKM = 90°
Получили:
KMNL - ромб с углами по 90° => KMNL является квадратом.
2). Проведем в четырехугольнике KMNL диагонали ML и KN.
Так как BK = CN = AK = ND, то ВС || KN || AD
Аналогично: AB || ML || CD.
Следовательно: ML⊥KN, причем: ML = KN.
Значит KMNL - ромб с равными диагоналями, т.е. KMNL - квадрат.
Объяснение:Находим критические точки данной функции.
Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.
у' = (-х^2 + 6х + 7)' = -2x + 6.
-2x + 6 = 0;
2x = 6;
x = 6 / 2 = 3.
Следовательно, точка х = 3 является критической точкой данной функции.
Находим значение второй производной данной функции в точке х = 3.
у'' = (-2x + 6)' = -2.
Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.
Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).
ответ: данная функция убывает на промежутке (3; +∞).
Докажите, что середины сторон квадрата являются вершинами другого квадрата.
1). Рассмотрим треугольники в углах исходного квадрата, - KBM; MCN; NDL; LAK. Все они являются равнобедренными прямоугольными треугольниками с равными катетами.
Следовательно, их гипотенузы также равны: KM = MN = NL = LK.
Кроме того, так как углы при гипотенузах равны 45°, то:
∠KMN = ∠MNL = ∠NLK = ∠LKM = 90°
Получили:
KMNL - ромб с углами по 90° => KMNL является квадратом.
2). Проведем в четырехугольнике KMNL диагонали ML и KN.
Так как BK = CN = AK = ND, то ВС || KN || AD
Аналогично: AB || ML || CD.
Следовательно: ML⊥KN, причем: ML = KN.
Значит KMNL - ромб с равными диагоналями, т.е. KMNL - квадрат.
Объяснение:Находим критические точки данной функции.
Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.
у' = (-х^2 + 6х + 7)' = -2x + 6.
-2x + 6 = 0;
2x = 6;
x = 6 / 2 = 3.
Следовательно, точка х = 3 является критической точкой данной функции.
Находим значение второй производной данной функции в точке х = 3.
у'' = (-2x + 6)' = -2.
Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.
Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).
ответ: данная функция убывает на промежутке (3; +∞).