В шахматном матном соревновании каждый участник проводит одну игру семи остальными участниками. Сколько человек участвовало в соревновании, если всего было проведено 120 игр?
task/23485822 ---.---.---.---.---.--- При каких значениях параметра m уравнение mx-x+1=m^2: 1)имеет ровно один корень; 2) не имеет корней ; 3)имеет более одного корня?
mx-x+1=m² ; mx - x = m² -1 (m -1)*x =(m-1)*(m+1) 1) если m -1≠ 0 (т.е. m ≠ 1) _ровно один корень x =m+1 . 3) если m = 1 , то получится 0*x =0 ⇒x_любое число (уравнение имеет бесконечное число корней . 2) m ∈∅ ( уравнение при всех m имеет корень , иначе не существует такое значение m при котором уравнение не имел корень)
Другой пример (b-1)(b+1)x =(b-1)(b+2) 1) b ≠ ±1 один корень x =(b+2)/(b+1) 2) b= -1 * * * 0*x = -2 *** не имеет корней 3) b=1 * * * 0*x =0 * * * бесконечно много корней .
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0
---.---.---.---.---.---
При каких значениях параметра m уравнение mx-x+1=m^2:
1)имеет ровно один корень;
2) не имеет корней ;
3)имеет более одного корня?
mx-x+1=m² ;
mx - x = m² -1
(m -1)*x =(m-1)*(m+1)
1) если m -1≠ 0 (т.е. m ≠ 1) _ровно один корень x =m+1 .
3) если m = 1 , то получится 0*x =0 ⇒x_любое число (уравнение имеет бесконечное число корней .
2) m ∈∅ ( уравнение при всех m имеет корень , иначе не существует такое значение m при котором уравнение не имел корень)
Другой пример
(b-1)(b+1)x =(b-1)(b+2)
1) b ≠ ±1 один корень x =(b+2)/(b+1)
2) b= -1 * * * 0*x = -2 *** не имеет корней
3) b=1 * * * 0*x =0 * * * бесконечно много корней .